공부정리/NLP

[NLP] DialoGPT 를 이용해서 데이터 커스텀을 통한 GPT 생성 - HuggingFace

sillon 2023. 5. 15. 23:04
728x90
반응형

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00000-e1532e6c-1d68-438a-9ae3-e3d5d228be0b",
"deepnote_cell_type": "markdown",
"id": "VTze-VbeU1c0"
},
"source": [
"# Fine-tune a DialoGPT model\n",
"\n",
"Adapted from the notebook in this Medium post."
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00001-f1561e9e-4ec2-471c-947d-1fb1e9006488",
"deepnote_cell_type": "markdown",
"id": "Y17kuzFNUSrZ"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"cell_id": "00005-59bb6055-765e-499d-b35a-b84721c6fd19",
"deepnote_cell_type": "code",
"id": "dnv5kT-mLsB-"
},
"outputs": [],
"source": [
"# all the imports\n",
"\n",
"import glob\n",
"import logging\n",
"import os\n",
"import pickle\n",
"import random\n",
"import re\n",
"import shutil\n",
"from typing import Dict, List, Tuple\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from torch.nn.utils.rnn import pad_sequence\n",
"from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler\n",
"from torch.utils.data.distributed import DistributedSampler\n",
"from tqdm.notebook import tqdm, trange\n",
"\n",
"from pathlib import Path\n",
"\n",
"from transformers import (\n",
" MODEL_WITH_LM_HEAD_MAPPING,\n",
" WEIGHTS_NAME,\n",
" AdamW,\n",
" AutoConfig,\n",
" PreTrainedModel,\n",
" PreTrainedTokenizer,\n",
" get_linear_schedule_with_warmup,\n",
")\n",
"\n",
"\n",
"try:\n",
" from torch.utils.tensorboard import SummaryWriter\n",
"except ImportError:\n",
" from tensorboardX import SummaryWriter"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00006-7f2ee539-7826-4795-b2a6-2d581899b8ad",
"deepnote_cell_type": "markdown",
"id": "BmrbGB8aUmBm"
},
"source": [
"## Get Data from Kaggle"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"cell_id": "00009-47197517-46a5-4c2a-adbf-fa563187bfe5",
"deepnote_cell_type": "code",
"id": "RXdJTSVwWGHj"
},
"outputs": [],
"source": [
"data = pd.read_csv('./data/hospital.csv',encoding='cp949')"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"cell_id": "00010-53c4a4f6-97f0-4297-b4e1-95dbb2dda8dc",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 303
},
"deepnote_cell_type": "code",
"id": "h6kGx-9eG7qA",
"outputId": "6091a58a-79c2-453d-b792-6eddaa40ec74"
},
"outputs": [
{
"data": {
"text/html": [
"

\n",
"\n",
"<table border="1" class="dataframe">\n",
" \n",
" <tr style="text-align: right;">\n",
" \n",
" 대분류\n",
" 소분류\n",
" 상황\n",
" Set Nr.\n",
" 발화자\n",
" 원문\n",
" 번역문\n",
" \n",
" \n",
" \n",
" \n",
" 265\n",
" 일상대화\n",
" 병원\n",
" 검사실/검진실에 있는 상황\n",
" 11518\n",
" B-1\n",
" 오늘 응급으로 급하게 촬영하는 환자가 계셔서 다들 뒤로 밀려났어요.\n",
" We have a patient taking it in an emergency, s...\n",
" \n",
" \n",
" 78\n",
" 일상대화\n",
" 병원\n",
" 접수/수납하는 상황\n",
" 11471\n",
" A-2\n",
" 오전에는 진료가 힘든 것 같아요.\n",
" It seems he won't make it to consultations in ...\n",
" \n",
" \n",
" 347\n",
" 일상대화\n",
" 병원\n",
" 담당의사가 병실 회진을 할 때 환자와의 상담 내용\n",
" 11538\n",
" B-2\n",
" 남편이 불편하다고 하면 바로 알려 드릴게요.\n",
" I will let you know when my husband says so.\n",
" \n",
" \n",
" 255\n",
" 일상대화\n",
" 병원\n",
" 검사실/검진실에 있는 상황\n",
" 11515\n",
" B-2\n",
" 수면제 투약할 때 미리 알려주세요.\n",
" Let me know in advance when administering it.\n",
" \n",
" \n",
" 327\n",
" 일상대화\n",
" 병원\n",
" 담당의사가 병실 회진을 할 때 환자와의 상담 내용\n",
" 11533\n",
" B-2\n",
" 그러면, 외박하는 당일날에 진통약도 함께 처방받아서 받아 가세요.\n",
" Then, get painkillers prescribed on that day a...\n",
" \n",
" \n",
" 291\n",
" 일상대화\n",
" 병원\n",
" 병실 내에서 다른환자들과의 대화\n",
" 11524\n",
" B-2\n",
" 헬멧을 사용하고 있어서 머리는 안 다쳤는데, 다리 말고 몸이 많이 쓸렸어요.\n",
" I was wearing a helmet so I didn't hurt my hea...\n",
" \n",
" \n",
"\n",
"
"
],
"text/plain": [
" 대분류 소분류 상황 Set Nr. 발화자 \\n",
"265 일상대화 병원 검사실/검진실에 있는 상황 11518 B-1 \n",
"78 일상대화 병원 접수/수납하는 상황 11471 A-2 \n",
"347 일상대화 병원 담당의사가 병실 회진을 할 때 환자와의 상담 내용 11538 B-2 \n",
"255 일상대화 병원 검사실/검진실에 있는 상황 11515 B-2 \n",
"327 일상대화 병원 담당의사가 병실 회진을 할 때 환자와의 상담 내용 11533 B-2 \n",
"291 일상대화 병원 병실 내에서 다른환자들과의 대화 11524 B-2 \n",
"\n",
" 원문 \\n",
"265 오늘 응급으로 급하게 촬영하는 환자가 계셔서 다들 뒤로 밀려났어요. \n",
"78 오전에는 진료가 힘든 것 같아요. \n",
"347 남편이 불편하다고 하면 바로 알려 드릴게요. \n",
"255 수면제 투약할 때 미리 알려주세요. \n",
"327 그러면, 외박하는 당일날에 진통약도 함께 처방받아서 받아 가세요. \n",
"291 헬멧을 사용하고 있어서 머리는 안 다쳤는데, 다리 말고 몸이 많이 쓸렸어요. \n",
"\n",
" 번역문 \n",
"265 We have a patient taking it in an emergency, s... \n",
"78 It seems he won't make it to consultations in ... \n",
"347 I will let you know when my husband says so. \n",
"255 Let me know in advance when administering it. \n",
"327 Then, get painkillers prescribed on that day a... \n",
"291 I was wearing a helmet so I didn't hurt my hea... "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.sample(6)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_21834/1955126597.py:2: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" data['발화자'][i] = data['발화자'][i].replace("A-1","A")\n",
"/tmp/ipykernel_21834/1955126597.py:3: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" data['발화자'][i] = data['발화자'][i].replace("A-2","A")\n"
]
}
],
"source": [
"for i in range(len(data)):\n",
" data['발화자'][i] = data['발화자'][i].replace("A-1","A")\n",
" data['발화자'][i] = data['발화자'][i].replace("A-2","A")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"<table border="1" class="dataframe">\n",
" \n",
" <tr style="text-align: right;">\n",
" \n",
" 대분류\n",
" 소분류\n",
" 상황\n",
" Set Nr.\n",
" 발화자\n",
" 원문\n",
" 번역문\n",
" \n",
" \n",
" \n",
" \n",
" 0\n",
" 일상대화\n",
" 병원\n",
" 증상을 묻고 답하는 상황\n",
" 11452\n",
" A\n",
" 밥을 먹었는데도 속이 메스꺼워서 병원에 오게 되었어요.\n",
" I came to the hospital because I feel nauseate...\n",
" \n",
" \n",
" 1\n",
" 일상대화\n",
" 병원\n",
" 증상을 묻고 답하는 상황\n",
" 11452\n",
" B-1\n",
" 속이 좋지 않은 것 말고 다른 증상은 없으신가요?\n",
" Do you have any other symptoms other than feel...\n",
" \n",
" \n",
" 2\n",
" 일상대화\n",
" 병원\n",
" 증상을 묻고 답하는 상황\n",
" 11452\n",
" A\n",
" 속도 안 좋지만, 자꾸 구토할 듯한 느낌이 나요.\n",
" I feel like vomiting right now.\n",
" \n",
" \n",
" 3\n",
" 일상대화\n",
" 병원\n",
" 증상을 묻고 답하는 상황\n",
" 11452\n",
" B-2\n",
" 요즘 장염이 유행이라, 장염이 가능성이 있겠어요.\n",
" There's a high chance of enteritis.\n",
" \n",
" \n",
" 4\n",
" 일상대화\n",
" 병원\n",
" 증상을 묻고 답하는 상황\n",
" 11453\n",
" A\n",
" 머리가 깨질 듯이 아프고, 누워 있어도 천장이 빙빙 도는 느낌이 들어요.\n",
" I have a terrible headache and it feels like t...\n",
" \n",
" \n",
"\n",
"
"
],
"text/plain": [
" 대분류 소분류 상황 Set Nr. 발화자 \\n",
"0 일상대화 병원 증상을 묻고 답하는 상황 11452 A \n",
"1 일상대화 병원 증상을 묻고 답하는 상황 11452 B-1 \n",
"2 일상대화 병원 증상을 묻고 답하는 상황 11452 A \n",
"3 일상대화 병원 증상을 묻고 답하는 상황 11452 B-2 \n",
"4 일상대화 병원 증상을 묻고 답하는 상황 11453 A \n",
"\n",
" 원문 \\n",
"0 밥을 먹었는데도 속이 메스꺼워서 병원에 오게 되었어요. \n",
"1 속이 좋지 않은 것 말고 다른 증상은 없으신가요? \n",
"2 속도 안 좋지만, 자꾸 구토할 듯한 느낌이 나요. \n",
"3 요즘 장염이 유행이라, 장염이 가능성이 있겠어요. \n",
"4 머리가 깨질 듯이 아프고, 누워 있어도 천장이 빙빙 도는 느낌이 들어요. \n",
"\n",
" 번역문 \n",
"0 I came to the hospital because I feel nauseate... \n",
"1 Do you have any other symptoms other than feel... \n",
"2 I feel like vomiting right now. \n",
"3 There's a high chance of enteritis. \n",
"4 I have a terrible headache and it feels like t... "
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"cell_id": "00011-f38f40d4-6f1b-4df2-b55d-85e8ffb49905",
"deepnote_cell_type": "code",
"id": "PG8v6--qWUwj"
},
"outputs": [],
"source": [
"CHARACTER_NAME = 'A'"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"cell_id": "00012-ae1869ae-3d0b-454e-9d44-683576df1b9e",
"deepnote_cell_type": "code",
"id": "GZUcEMd2WLDT"
},
"outputs": [],
"source": [
"contexted = []\n",
"\n",
"# context window of size 7\n",
"n = 7\n",
"\n",
"for i in data[data.발화자 == CHARACTER_NAME].index:\n",
" if i < n:\n",
" continue\n",
" row = []\n",
" prev = i - 1 - n # we additionally substract 1, so row will contain current responce and 7 previous responces \n",
" for j in range(i, prev, -1):\n",
" row.append(data.번역문[j])\n",
" contexted.append(row)\n",
"\n",
"columns = ['response', 'context'] \n",
"columns = columns + ['context/' + str(i) for i in range(n - 1)]\n",
"\n",
"df = pd.DataFrame.from_records(contexted, columns=columns)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"cell_id": "00013-b0d9519f-21ff-49b1-8e1f-a17515493746",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 558
},
"deepnote_cell_type": "code",
"id": "4T5OlNZHUxij",
"outputId": "1a65fe43-27f0-40a8-da36-303342a82a28"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"<table border="1" class="dataframe">\n",
" \n",
" <tr style="text-align: right;">\n",
" \n",
" response\n",
" context\n",
" context/0\n",
" context/1\n",
" context/2\n",
" context/3\n",
" context/4\n",
" context/5\n",
" \n",
" \n",
" \n",
" \n",
" 150\n",
" Did you see my spoon holder by any chance?\n",
" No, I will just see the 9 o'clock news so let'...\n",
" I was going to watch the evening soap opera, b...\n",
" I am waiting for the 8 o'clock news, but is th...\n",
" Can I change the television channel?\n",
" I asked the doctor and she told me it is 80,00...\n",
" Do you know how much a double room costs?\n",
" Double rooms are too expensive even with insur...\n",
" \n",
" \n",
" 53\n",
" Moms who are contacting newly born babies may ...\n",
" I am here to see mom who gave birth to my brot...\n",
" Children under the age of 13 cannot visit the ...\n",
" I feel uncomfortable when moving with the IV b...\n",
" Just in case, I would like to get it done now.\n",
" I thought I would get the IV in the evening bu...\n",
" Before the operation, I will take the vessel a...\n",
" I am glad to see you recovered soon.\n",
" \n",
" \n",
" 103\n",
" Take your top off then I will inject on your l...\n",
" My sleeves are too tight to roll up so I guess...\n",
" This injection is given on the arm, not in the...\n",
" I will do my best to inject on the back of her...\n",
" If you don't find it on the back of her hand, ...\n",
" Let me find a spot for injection on the back o...\n",
" The baby will be injected a fluid but I don't ...\n",
" That is a very simple treatment method.\n",
" \n",
" \n",
" 186\n",
" You have quite a lot of medicine today.\n",
" I never knew that there is a cough patch.\n",
" This patch expands the bronchial tubes before ...\n",
" No, it is my first time using it. How can I us...\n",
" You have received a cough patch on the prescri...\n",
" The half-sized pill is missing in lunch medicine.\n",
" There is a sleeping pill ingredient in the mor...\n",
" What kind of ingredients are taken out in the ...\n",
" \n",
" \n",
" 198\n",
" Can you give me over-the-counter cold preparat...\n",
" Usually, bruises naturally disappear so you ha...\n",
" My baby is 24months old. Can she have it applied?\n",
" We have a liniment for a bruise, but it is onl...\n",
" My baby jumped from the sofa, bumped her foreh...\n",
" I never knew there were steroids in it. I shou...\n",
" A steroid is contained in the liniment so don'...\n",
" How often do I apply the liniment?\n",
" \n",
" \n",
" 105\n",
" Do not rub the alcohol cotton, but keep pressi...\n",
" I will disinfect before taking the needle off.\n",
" The fluid is all in so please take off the nee...\n",
" I am left-handed so inject on my right arm.\n",
" Take your top off then I will inject on your l...\n",
" My sleeves are too tight to roll up so I guess...\n",
" This injection is given on the arm, not in the...\n",
" I will do my best to inject on the back of her...\n",
" \n",
" \n",
"\n",
"
"
],
"text/plain": [
" response \\n",
"150 Did you see my spoon holder by any chance? \n",
"53 Moms who are contacting newly born babies may ... \n",
"103 Take your top off then I will inject on your l... \n",
"186 You have quite a lot of medicine today. \n",
"198 Can you give me over-the-counter cold preparat... \n",
"105 Do not rub the alcohol cotton, but keep pressi... \n",
"\n",
" context \\n",
"150 No, I will just see the 9 o'clock news so let'... \n",
"53 I am here to see mom who gave birth to my brot... \n",
"103 My sleeves are too tight to roll up so I guess... \n",
"186 I never knew that there is a cough patch. \n",
"198 Usually, bruises naturally disappear so you ha... \n",
"105 I will disinfect before taking the needle off. \n",
"\n",
" context/0 \\n",
"150 I was going to watch the evening soap opera, b... \n",
"53 Children under the age of 13 cannot visit the ... \n",
"103 This injection is given on the arm, not in the... \n",
"186 This patch expands the bronchial tubes before ... \n",
"198 My baby is 24months old. Can she have it applied? \n",
"105 The fluid is all in so please take off the nee... \n",
"\n",
" context/1 \\n",
"150 I am waiting for the 8 o'clock news, but is th... \n",
"53 I feel uncomfortable when moving with the IV b... \n",
"103 I will do my best to inject on the back of her... \n",
"186 No, it is my first time using it. How can I us... \n",
"198 We have a liniment for a bruise, but it is onl... \n",
"105 I am left-handed so inject on my right arm. \n",
"\n",
" context/2 \\n",
"150 Can I change the television channel? \n",
"53 Just in case, I would like to get it done now. \n",
"103 If you don't find it on the back of her hand, ... \n",
"186 You have received a cough patch on the prescri... \n",
"198 My baby jumped from the sofa, bumped her foreh... \n",
"105 Take your top off then I will inject on your l... \n",
"\n",
" context/3 \\n",
"150 I asked the doctor and she told me it is 80,00... \n",
"53 I thought I would get the IV in the evening bu... \n",
"103 Let me find a spot for injection on the back o... \n",
"186 The half-sized pill is missing in lunch medicine. \n",
"198 I never knew there were steroids in it. I shou... \n",
"105 My sleeves are too tight to roll up so I guess... \n",
"\n",
" context/4 \\n",
"150 Do you know how much a double room costs? \n",
"53 Before the operation, I will take the vessel a... \n",
"103 The baby will be injected a fluid but I don't ... \n",
"186 There is a sleeping pill ingredient in the mor... \n",
"198 A steroid is contained in the liniment so don'... \n",
"105 This injection is given on the arm, not in the... \n",
"\n",
" context/5 \n",
"150 Double rooms are too expensive even with insur... \n",
"53 I am glad to see you recovered soon. \n",
"103 That is a very simple treatment method. \n",
"186 What kind of ingredients are taken out in the ... \n",
"198 How often do I apply the liniment? \n",
"105 I will do my best to inject on the back of her... "
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.sample(6)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"cell_id": "00014-d864c0fe-77a2-401d-8c3c-c554ebba3f3a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 510
},
"deepnote_cell_type": "code",
"id": "NGy0MxMQVIAP",
"outputId": "65830c0f-f8e3-4b1b-ed9e-b2e9574d306f"
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"<table border="1" class="dataframe">\n",
" \n",
" <tr style="text-align: right;">\n",
" \n",
" response\n",
" context\n",
" context/0\n",
" context/1\n",
" context/2\n",
" context/3\n",
" context/4\n",
" context/5\n",
" \n",
" \n",
" \n",
" \n",
" 35\n",
" It seems he won't make it to consultations in ...\n",
" The operation must be a long one.\n",
" The doctor in charge of you is scheduled for a...\n",
" A doctor with a short waiting list, please.\n",
" To which room do you want to be assigned?\n",
" Can you assign me another doctor today?\n",
" Shall I receive you to doctor number 5 in char...\n",
" Hold on, let me pay with a card.\n",
" \n",
" \n",
" 23\n",
" From the beginning of this month, infants unde...\n",
" That sounds way too low, but why?\n",
" The total consultation fee is 800 won.\n",
" There are 15 people and I think you will have ...\n",
" How many people are awaiting?\n",
" He has a quite long waiting list, so are you o...\n",
" Can I get a consultation from the doctor of de...\n",
" Please assign a female doctor with a few patie...\n",
" \n",
" \n",
" 166\n",
" I heard from the nurse that you had painkiller...\n",
" I think I will feel better if I feel less bloa...\n",
" Let's keep administering the medicine and I wi...\n",
" I felt better after administering the medicine...\n",
" Do you feel less bloated than yesterday?\n",
" Always be well and I wish you to recover soon.\n",
" You took great care of me and I am sorry to he...\n",
" I should have informed you in advance but I ha...\n",
" \n",
" \n",
" 14\n",
" I feel itchy and it gets better when I cool it...\n",
" For now, it seems that the bruise is inside th...\n",
" I see a bruise getting bigger on my toenail. W...\n",
" Your toe is moving a little so there is nothin...\n",
" I dropped a glass container on the top of my f...\n",
" It may happen when you overuse your hands but ...\n",
" Can the ligament be extended if the hands are ...\n",
" You used your hand a lot bringing up your chil...\n",
" \n",
" \n",
" 19\n",
" Do you want to be registered to a female doctor?\n",
" I want consultation at gynecology and do you h...\n",
" At which department do you want a consultation?\n",
" You don't need to write down the address and c...\n",
" There is an address section as well. Should I ...\n",
" Write down your name, contact information and ...\n",
" This is my first time getting a consultation a...\n",
" These days, people living in new houses get it...\n",
" \n",
" \n",
"\n",
"
"
],
"text/plain": [
" response \\n",
"35 It seems he won't make it to consultations in ... \n",
"23 From the beginning of this month, infants unde... \n",
"166 I heard from the nurse that you had painkiller... \n",
"14 I feel itchy and it gets better when I cool it... \n",
"19 Do you want to be registered to a female doctor? \n",
"\n",
" context \\n",
"35 The operation must be a long one. \n",
"23 That sounds way too low, but why? \n",
"166 I think I will feel better if I feel less bloa... \n",
"14 For now, it seems that the bruise is inside th... \n",
"19 I want consultation at gynecology and do you h... \n",
"\n",
" context/0 \\n",
"35 The doctor in charge of you is scheduled for a... \n",
"23 The total consultation fee is 800 won. \n",
"166 Let's keep administering the medicine and I wi... \n",
"14 I see a bruise getting bigger on my toenail. W... \n",
"19 At which department do you want a consultation? \n",
"\n",
" context/1 \\n",
"35 A doctor with a short waiting list, please. \n",
"23 There are 15 people and I think you will have ... \n",
"166 I felt better after administering the medicine... \n",
"14 Your toe is moving a little so there is nothin... \n",
"19 You don't need to write down the address and c... \n",
"\n",
" context/2 \\n",
"35 To which room do you want to be assigned? \n",
"23 How many people are awaiting? \n",
"166 Do you feel less bloated than yesterday? \n",
"14 I dropped a glass container on the top of my f... \n",
"19 There is an address section as well. Should I ... \n",
"\n",
" context/3 \\n",
"35 Can you assign me another doctor today? \n",
"23 He has a quite long waiting list, so are you o... \n",
"166 Always be well and I wish you to recover soon. \n",
"14 It may happen when you overuse your hands but ... \n",
"19 Write down your name, contact information and ... \n",
"\n",
" context/4 \\n",
"35 Shall I receive you to doctor number 5 in char... \n",
"23 Can I get a consultation from the doctor of de... \n",
"166 You took great care of me and I am sorry to he... \n",
"14 Can the ligament be extended if the hands are ... \n",
"19 This is my first time getting a consultation a... \n",
"\n",
" context/5 \n",
"35 Hold on, let me pay with a card. \n",
"23 Please assign a female doctor with a few patie... \n",
"166 I should have informed you in advance but I ha... \n",
"14 You used your hand a lot bringing up your chil... \n",
"19 These days, people living in new houses get it... "
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trn_df, val_df = train_test_split(df, test_size=0.1)\n",
"trn_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"cell_id": "00015-bfc84225-09f2-4398-9ed6-c76fe23bf9ae",
"deepnote_cell_type": "code",
"id": "aEeJQlAKWtiJ"
},
"outputs": [],
"source": [
"# create dataset suitable for our model\n",
"def construct_conv(row, tokenizer, eos = True):\n",
" flatten = lambda l: [item for sublist in l for item in sublist]\n",
" conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))\n",
" conv = flatten(conv)\n",
" return conv\n",
"\n",
"class ConversationDataset(Dataset):\n",
" def init(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512):\n",
"\n",
" block_size = block_size - (tokenizer.model_max_length - tokenizer.max_len_single_sentence)\n",
"\n",
" directory = args.cache_dir\n",
" cached_features_file = os.path.join(\n",
" directory, args.model_type + "cached_lm_" + str(block_size)\n",
" )\n",
"\n",
" if os.path.exists(cached_features_file) and not args.overwrite_cache:\n",
" logger.info("Loading features from cached file %s", cached_features_file)\n",
" with open(cached_features_file, "rb") as handle:\n",
" self.examples = pickle.load(handle)\n",
" else:\n",
" logger.info("Creating features from dataset file at %s", directory)\n",
"\n",
" self.examples = []\n",
" for , row in df.iterrows():\n",
" conv = construct_conv(row, tokenizer)\n",
" self.examples.append(conv)\n",
"\n",
" logger.info("Saving features into cached file %s", cached_features_file)\n",
" with open(cached_features_file, "wb") as handle:\n",
" pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)\n",
"\n",
" def _len
(self):\n",
" return len(self.examples)\n",
"\n",
" def getitem(self, item):\n",
" return torch.tensor(self.examples[item], dtype=torch.long)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"cell_id": "00016-e242a320-fac6-427e-9c66-9510fafa112d",
"deepnote_cell_type": "code",
"id": "-3iHwoKlWyrs"
},
"outputs": [],
"source": [
"# Cacheing and storing of data/checkpoints\n",
"\n",
"def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):\n",
" return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)\n",
"\n",
"\n",
"def set_seed(args):\n",
" random.seed(args.seed)\n",
" np.random.seed(args.seed)\n",
" torch.manual_seed(args.seed)\n",
" if args.n_gpu > 0:\n",
" torch.cuda.manual_seed_all(args.seed)\n",
"\n",
"\n",
"def sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:\n",
" ordering_and_checkpoint_path = []\n",
"\n",
" glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-".format(checkpoint_prefix)))\n",
"\n",
" for path in glob_checkpoints:\n",
" if use_mtime:\n",
" ordering_and_checkpoint_path.append((os.path.getmtime(path), path))\n",
" else:\n",
" regex_match = re.match(".
{}-([0-9]+)".format(checkpoint_prefix), path)\n",
" if regex_match and regex_match.groups():\n",
" ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))\n",
"\n",
" checkpoints_sorted = sorted(ordering_and_checkpoint_path)\n",
" checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]\n",
" return checkpoints_sorted\n",
"\n",
"\n",
"def rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:\n",
" if not args.save_total_limit:\n",
" return\n",
" if args.save_total_limit <= 0:\n",
" return\n",
"\n",
" # Check if we should delete older checkpoint(s)\n",
" checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)\n",
" if len(checkpoints_sorted) <= args.save_total_limit:\n",
" return\n",
"\n",
" number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)\n",
" checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]\n",
" for checkpoint in checkpoints_to_be_deleted:\n",
" logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))\n",
" shutil.rmtree(checkpoint)"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00017-712df464-f1b8-4a19-851a-31958d24fe29",
"deepnote_cell_type": "markdown",
"id": "EEDdTJTqUwZJ"
},
"source": [
"## Build Model"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"cell_id": "00018-cbd90a4b-637d-405c-be7a-eb0b92d7db4b",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 231,
"referenced_widgets": [
"924d0b23a20f423ea28c03b63e55d5c1",
"ea51c7ae24354b31ad5fa724700aed0e",
"5c378b98a59a42f6ba0241b490999214",
"c3b2f4a71f664d4ebcd237b2ccb4c72d",
"10e451d78cea4b9c903f3acde2135bb4",
"7438ec47869545d09fa29410a29a8056",
"4687279b5213426fa4816a1aef931965",
"f776efddb638452fa783a593d75b39c2",
"5e624b2d080f45ce896057fb6f32da50",
"61edcfb6213e476db6515cb2dc0d443c",
"e39c2b28e72f45168c98a18843d40e45",
"19b3bf43ce624ffe91e93b081c17e230",
"50645fb8d66248c9bd0fefa7dfedb63a",
"98f053def4eb49c388c1b9ec5522fcb9",
"1b1afa82c7ec434ea055b535b7633a20",
"a8f8422f84e44af790f3df6f3a2b2fa0",
"36a3a76061e247ba83910633730b3d79",
"0176fea419f643108556169b3e254593",
"4663b6836243405b8484d3b8cb4c142d",
"819e563dc615432dbae79291535531b2",
"4a5b0d20fa5841639e0efb6fac78f9b5",
"8d22ee6e39174f5f8e342a156a323ce3",
"f5f9c8c0e8814258a32d5cf60c49f640",
"14ec5c3b716a45719fc2432847ebd5e1",
"3c57ab09a2d243c49113d5440924cbf8",
"97cd5eea048e4fdb8e445a65db179e98",
"cfd7ee6215074d319467df184a3fa1a3",
"b4aa1dc7e7a54199a26917cfa1b80a0d",
"d661f6a49f9143cab40226922aaecbd5",
"82beeb5a7cd94155a169da2d5ee3bae4",
"d7d3203f5dd845a58d9e3a109a669afb",
"03c261a2820e4202872da868e2581463",
"2d938445fa094302996261c3a0f4b449",
"9f2c915e08f24f58b33baad1a9920bd3",
"c74a065d2ffc442490cb74dc26cfe413",
"896432acc69d4f15bf100aad978b633a",
"bb7cc84d68f64576a9cc3b64422ec172",
"9b24b05dfcee4e2d8795e13efd3256c9",
"b7e3a1799b9248e0b5bd709537194fbd",
"632bf981f33b4afc806c32376f5f8890",
"fd1253ab10be4056aa861f225148985e",
"9c8a3d9e8db048a5836fbf901df12a11",
"3e76e49012cd49728326a577475f2613",
"fd015f3534ac4c4e9dbaf6a29d699558",
"c2913e7dc3a74330bfcdde47486bee52",
"f9cf6c10f6904550a9f7dd7cac79282b",
"42792f7537d44a8cb05e2f831115c38e",
"8134df3bab414d2f9820492ba5b1855d",
"ff43f075183f4e93ae151bc4ca55015b",
"189fa4cd2ebe446a8aa317d1176698af",
"c9853de7562643268ca86d000deb8a57",
"952840fc90b04abbb473f28a096eb52e",
"696af76a97b84aaab5c7ab4db43d1e5a",
"93fc31bef2cd49f3a703fc6e2f879a26",
"c42e773418c44a58a024403c78a2d9c2"
]
},
"deepnote_cell_type": "code",
"id": "r2cE0fY5UHpz",
"outputId": "e9faf138-18e1-4cb8-d016-e6ef337bcc09"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8cb9dca20dab4d5fb7deb10a1a851fee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)okenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "375df9c63e8a436e86b3c28e05101102",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)lve/main/config.json: 0%| | 0.00/642 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b5e34bb51f6840be8c62e3d7f8fc59ba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)olve/main/vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd6194aa62684fc4b15a34c49ce9051b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/suyeon/.conda/envs/seoul/lib/python3.8/site-packages/transformers/models/auto/modeling_auto.py:1352: FutureWarning: The class AutoModelWithLMHead is deprecated and will be removed in a future version. Please use AutoModelForCausalLM for causal language models, AutoModelForMaskedLM for masked language models and AutoModelForSeq2SeqLM for encoder-decoder models.\n",
" warnings.warn(\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7cec7b2cb12342dcb894287ad075f145",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading pytorch_model.bin: 0%| | 0.00/863M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3133475b854948a6868834fd5e8f3b42",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)neration_config.json: 0%| | 0.00/124 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from transformers import AutoModelWithLMHead, AutoModelForCausalLM, AutoTokenizer\n",
"import torch\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")\n",
"model = AutoModelWithLMHead.from_pretrained("microsoft/DialoGPT-medium")"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"cell_id": "00019-fcab14c1-f4a7-4d89-bd9f-f999aacd63e9",
"deepnote_cell_type": "code",
"id": "ra2vsRp-UMXo"
},
"outputs": [],
"source": [
""""\n",
"Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).\n",
"GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned\n",
"using a masked language modeling (MLM) loss.\n",
""""\n",
"\n",
"# Configs\n",
"logger = logging.getLogger(__name
)\n",
"\n",
"MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())\n",
"MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"cell_id": "00020-566a709f-f62a-4209-91ee-773847714eb5",
"deepnote_cell_type": "code",
"id": "2OnASqJjUNJa"
},
"outputs": [],
"source": [
"# Args to allow for easy convertion of python script to notebook\n",
"class Args():\n",
" def init(self):\n",
" self.output_dir = './content/output-medium'\n",
" self.model_type = 'gpt2'\n",
" self.model_name_or_path = 'microsoft/DialoGPT-medium'\n",
" self.config_name = 'microsoft/DialoGPT-medium'\n",
" self.tokenizer_name = 'microsoft/DialoGPT-medium'\n",
" self.cache_dir = 'cached'\n",
" self.block_size = 512\n",
" self.do_train = True\n",
" self.do_eval = True\n",
" self.evaluate_during_training = False\n",
" self.per_gpu_train_batch_size = 4\n",
" self.per_gpu_eval_batch_size = 4\n",
" self.gradient_accumulation_steps = 1\n",
" self.learning_rate = 5e-5\n",
" self.weight_decay = 0.0\n",
" self.adam_epsilon = 1e-8\n",
" self.max_grad_norm = 1.0\n",
" self.num_train_epochs = 4\n",
" self.max_steps = -1\n",
" self.warmup_steps = 0\n",
" self.logging_steps = 1000\n",
" self.save_steps = 3500\n",
" self.save_total_limit = None\n",
" self.eval_all_checkpoints = False\n",
" self.no_cuda = False\n",
" self.overwrite_output_dir = True\n",
" self.overwrite_cache = True\n",
" self.should_continue = False\n",
" self.seed = 42\n",
" self.local_rank = -1\n",
" self.fp16 = False\n",
" self.fp16_opt_level = 'O1'\n",
"\n",
"args = Args()"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00021-72a2d478-6578-4d8b-a0bd-4310a765d649",
"deepnote_cell_type": "markdown",
"id": "9Q1dTFXxW9NE"
},
"source": [
"## Train and Evaluate"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"cell_id": "00022-4c5df9ab-1f7a-4d61-b577-763f2c8e284f",
"deepnote_cell_type": "code",
"id": "PaarIDZrW81h"
},
"outputs": [],
"source": [
"def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:\n",
" """ Train the model """\n",
" if args.local_rank in [-1, 0]:\n",
" tb_writer = SummaryWriter()\n",
"\n",
" args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)\n",
"\n",
" def collate(examples: List[torch.Tensor]):\n",
" if tokenizer._pad_token is None:\n",
" return pad_sequence(examples, batch_first=True)\n",
" return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)\n",
"\n",
" train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)\n",
" train_dataloader = DataLoader(\n",
" train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate, drop_last = True\n",
" )\n",
"\n",
" if args.max_steps > 0:\n",
" t_total = args.max_steps\n",
" args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1\n",
" else:\n",
" t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs\n",
"\n",
" model = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training\n",
" model.resize_token_embeddings(len(tokenizer))\n",
" # add_special_tokens
(model, tokenizer)\n",
"\n",
"\n",
" # Prepare optimizer and schedule (linear warmup and decay)\n",
" no_decay = ["bias", "LayerNorm.weight"]\n",
" optimizer_grouped_parameters = [\n",
" {\n",
" "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],\n",
" "weight_decay": args.weight_decay,\n",
" },\n",
" {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},\n",
" ]\n",
" optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)\n",
" scheduler = get_linear_schedule_with_warmup(\n",
" optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total\n",
" )\n",
"\n",
" # Check if saved optimizer or scheduler states exist\n",
" if (\n",
" args.model_name_or_path\n",
" and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))\n",
" and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))\n",
" ):\n",
" # Load in optimizer and scheduler states\n",
" optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))\n",
" scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))\n",
"\n",
" if args.fp16:\n",
" try:\n",
" from apex import amp\n",
" except ImportError:\n",
" raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")\n",
" model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)\n",
"\n",
" # multi-gpu training (should be after apex fp16 initialization)\n",
" if args.n_gpu > 1:\n",
" model = torch.nn.DataParallel(model)\n",
"\n",
" # Distributed training (should be after apex fp16 initialization)\n",
" if args.local_rank != -1:\n",
" model = torch.nn.parallel.DistributedDataParallel(\n",
" model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True\n",
" )\n",
"\n",
" # Train!\n",
" logger.info("* Running training *")\n",
" logger.info(" Num examples = %d", len(train_dataset))\n",
" logger.info(" Num Epochs = %d", args.num_train_epochs)\n",
" logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)\n",
" logger.info(\n",
" " Total train batch size (w. parallel, distributed & accumulation) = %d",\n",
" args.train_batch_size\n",
" * args.gradient_accumulation_steps\n",
" * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),\n",
" )\n",
" logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)\n",
" logger.info(" Total optimization steps = %d", t_total)\n",
"\n",
" global_step = 0\n",
" epochs_trained = 0\n",
" steps_trained_in_current_epoch = 0\n",
" # Check if continuing training from a checkpoint\n",
" if args.model_name_or_path and os.path.exists(args.model_name_or_path):\n",
" try:\n",
" # set global_step to gobal_step of last saved checkpoint from model path\n",
" checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]\n",
" global_step = int(checkpoint_suffix)\n",
" epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)\n",
" steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)\n",
"\n",
" logger.info(" Continuing training from checkpoint, will skip to saved global_step")\n",
" logger.info(" Continuing training from epoch %d", epochs_trained)\n",
" logger.info(" Continuing training from global step %d", global_step)\n",
" logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)\n",
" except ValueError:\n",
" logger.info(" Starting fine-tuning.")\n",
"\n",
" tr_loss, logging_loss = 0.0, 0.0\n",
"\n",
" model.zero_grad()\n",
" train_iterator = trange(\n",
" epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]\n",
" )\n",
" set_seed(args) # Added here for reproducibility\n",
" for _ in train_iterator:\n",
" epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])\n",
" for step, batch in enumerate(epoch_iterator):\n",
"\n",
" # Skip past any already trained steps if resuming training\n",
" if steps_trained_in_current_epoch > 0:\n",
" steps_trained_in_current_epoch -= 1\n",
" continue\n",
"\n",
" inputs, labels = (batch, batch)\n",
" if inputs.shape[1] > 1024: continue\n",
" inputs = inputs.to(args.device)\n",
" labels = labels.to(args.device)\n",
" model.train()\n",
" outputs = model(inputs, labels=labels)\n",
" loss = outputs[0] # model outputs are always tuple in transformers (see doc)\n",
"\n",
" if args.n_gpu > 1:\n",
" loss = loss.mean() # mean() to average on multi-gpu parallel training\n",
" if args.gradient_accumulation_steps > 1:\n",
" loss = loss / args.gradient_accumulation_steps\n",
"\n",
" if args.fp16:\n",
" with amp.scale_loss(loss, optimizer) as scaled_loss:\n",
" scaled_loss.backward()\n",
" else:\n",
" loss.backward()\n",
"\n",
" tr_loss += loss.item()\n",
" if (step + 1) % args.gradient_accumulation_steps == 0:\n",
" if args.fp16:\n",
" torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)\n",
" else:\n",
" torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)\n",
" optimizer.step()\n",
" scheduler.step() # Update learning rate schedule\n",
" model.zero_grad()\n",
" global_step += 1\n",
"\n",
" if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:\n",
" # Log metrics\n",
" if (\n",
" args.local_rank == -1 and args.evaluate_during_training\n",
" ): # Only evaluate when single GPU otherwise metrics may not average well\n",
" results = evaluate(args, model, tokenizer)\n",
" for key, value in results.items():\n",
" tb_writer.add_scalar("eval_{}".format(key), value, global_step)\n",
" tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)\n",
" tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)\n",
" logging_loss = tr_loss\n",
"\n",
" if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:\n",
" checkpoint_prefix = "checkpoint"\n",
" # Save model checkpoint\n",
" output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))\n",
" os.makedirs(output_dir, exist_ok=True)\n",
" model_to_save = (\n",
" model.module if hasattr(model, "module") else model\n",
" ) # Take care of distributed/parallel training\n",
" model_to_save.save_pretrained(output_dir)\n",
" tokenizer.save_pretrained(output_dir)\n",
"\n",
" torch.save(args, os.path.join(output_dir, "training_args.bin"))\n",
" logger.info("Saving model checkpoint to %s", output_dir)\n",
"\n",
" rotate_checkpoints(args, checkpoint_prefix)\n",
"\n",
" torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))\n",
" torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))\n",
" logger.info("Saving optimizer and scheduler states to %s", output_dir)\n",
"\n",
" if args.max_steps > 0 and global_step > args.max_steps:\n",
" epoch_iterator.close()\n",
" break\n",
" if args.max_steps > 0 and global_step > args.max_steps:\n",
" train_iterator.close()\n",
" break\n",
"\n",
" if args.local_rank in [-1, 0]:\n",
" tb_writer.close()\n",
"\n",
" return global_step, tr_loss / global_step\n",
"\n",
"# Evaluation of some model\n",
"\n",
"def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_trn, df_val, prefix="") -> Dict:\n",
" # Loop to handle MNLI double evaluation (matched, mis-matched)\n",
" eval_output_dir = args.output_dir\n",
"\n",
" eval_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=True)\n",
" os.makedirs(eval_output_dir, exist_ok=True)\n",
" args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)\n",
" # Note that DistributedSampler samples randomly\n",
"\n",
" def collate(examples: List[torch.Tensor]):\n",
" if tokenizer._pad_token is None:\n",
" return pad_sequence(examples, batch_first=True)\n",
" return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)\n",
"\n",
" eval_sampler = SequentialSampler(eval_dataset)\n",
" eval_dataloader = DataLoader(\n",
" eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate, drop_last = True\n",
" )\n",
"\n",
" # multi-gpu evaluate\n",
" if args.n_gpu > 1:\n",
" model = torch.nn.DataParallel(model)\n",
"\n",
" # Eval!\n",
" logger.info("* Running evaluation {} *".format(prefix))\n",
" logger.info(" Num examples = %d", len(eval_dataset))\n",
" logger.info(" Batch size = %d", args.eval_batch_size)\n",
" eval_loss = 0.0\n",
" nb_eval_steps = 0\n",
" model.eval()\n",
"\n",
" for batch in tqdm(eval_dataloader, desc="Evaluating"):\n",
" inputs, labels = (batch, batch)\n",
" inputs = inputs.to(args.device)\n",
" labels = labels.to(args.device)\n",
"\n",
" with torch.no_grad():\n",
" outputs = model(inputs, labels=labels)\n",
" lm_loss = outputs[0]\n",
" eval_loss += lm_loss.mean().item()\n",
" nb_eval_steps += 1\n",
"\n",
" eval_loss = eval_loss / nb_eval_steps\n",
" perplexity = torch.exp(torch.tensor(eval_loss))\n",
"\n",
" result = {"perplexity": perplexity}\n",
"\n",
" output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")\n",
" with open(output_eval_file, "w") as writer:\n",
" logger.info("* Eval results {} *".format(prefix))\n",
" for key in sorted(result.keys()):\n",
" logger.info(" %s = %s", key, str(result[key]))\n",
" writer.write("%s = %s\n" % (key, str(result[key])))\n",
"\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"cell_id": "00023-cfba104d-22eb-4328-8b57-239ed42d1360",
"deepnote_cell_type": "code",
"id": "SCnGAJWbXD9C"
},
"outputs": [],
"source": [
"# Main runner\n",
"\n",
"def main(df_trn, df_val):\n",
" args = Args()\n",
" \n",
" if args.should_continue:\n",
" sorted_checkpoints = _sorted_checkpoints(args)\n",
" if len(sorted_checkpoints) == 0:\n",
" raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")\n",
" else:\n",
" args.model_name_or_path = sorted_checkpoints[-1]\n",
"\n",
" if (\n",
" os.path.exists(args.output_dir)\n",
" and os.listdir(args.output_dir)\n",
" and args.do_train\n",
" and not args.overwrite_output_dir\n",
" and not args.should_continue\n",
" ):\n",
" raise ValueError(\n",
" "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(\n",
" args.output_dir\n",
" )\n",
" )\n",
"\n",
" # Setup CUDA, GPU & distributed \n",
" # os.environ["CUDA_VISIBLE_DEVICES"] = "0" # GPU\n",
" device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n",
" args.n_gpu = torch.cuda.device_count()\n",
" args.device = device\n",
"\n",
" # Setup logging\n",
" logging.basicConfig(\n",
" format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",\n",
" datefmt="%m/%d/%Y %H:%M:%S",\n",
" level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,\n",
" )\n",
" logger.warning(\n",
" "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",\n",
" args.local_rank,\n",
" device,\n",
" args.n_gpu,\n",
" bool(args.local_rank != -1),\n",
" args.fp16,\n",
" )\n",
"\n",
" # Set seed\n",
" set_seed(args)\n",
"\n",
" config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir)\n",
" tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)\n",
" model = AutoModelWithLMHead.from_pretrained(\n",
" args.model_name_or_path,\n",
" from_tf=False,\n",
" config=config,\n",
" cache_dir=args.cache_dir,\n",
" )\n",
" model.to(args.device)\n",
" \n",
" logger.info("Training/evaluation parameters %s", args)\n",
"\n",
" # Training\n",
" if args.do_train:\n",
" train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)\n",
"\n",
" global_step, tr_loss = train(args, train_dataset, model, tokenizer)\n",
" logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)\n",
"\n",
" # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()\n",
" if args.do_train:\n",
" # Create output directory if needed\n",
" os.makedirs(args.output_dir, exist_ok=True)\n",
"\n",
" logger.info("Saving model checkpoint to %s", args.output_dir)\n",
" # Save a trained model, configuration and tokenizer using save_pretrained().\n",
" # They can then be reloaded using from_pretrained()\n",
" model_to_save = (\n",
" model.module if hasattr(model, "module") else model\n",
" ) # Take care of distributed/parallel training\n",
" model_to_save.save_pretrained(args.output_dir)\n",
" tokenizer.save_pretrained(args.output_dir)\n",
"\n",
" # Good practice: save your training arguments together with the trained model\n",
" torch.save(args, os.path.join(args.output_dir, "training_args.bin"))\n",
"\n",
" # Load a trained model and vocabulary that you have fine-tuned\n",
" model = AutoModelWithLMHead.from_pretrained(args.output_dir)\n",
" tokenizer = AutoTokenizer.from_pretrained(args.output_dir)\n",
" model.to(args.device)\n",
"\n",
" # Evaluation\n",
" results = {}\n",
" if args.do_eval and args.local_rank in [-1, 0]:\n",
" checkpoints = [args.output_dir]\n",
" if args.eval_all_checkpoints:\n",
" checkpoints = list(\n",
" os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))\n",
" )\n",
" logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging\n",
" logger.info("Evaluate the following checkpoints: %s", checkpoints)\n",
" for checkpoint in checkpoints:\n",
" global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""\n",
" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""\n",
"\n",
" model = AutoModelWithLMHead.from_pretrained(checkpoint)\n",
" model.to(args.device)\n",
" result = evaluate(args, model, tokenizer, df_trn, df_val, prefix=prefix)\n",
" result = dict((k + "
{}".format(global_step), v) for k, v in result.items())\n",
" results.update(result)\n",
"\n",
" return results"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00024-93a983e5-e32a-474e-8b40-a2a26cd4d168",
"deepnote_cell_type": "markdown",
"id": "7NWvkdR-XHeB"
},
"source": [
"## Run the Main Function"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"cell_id": "00025-280c69e2-0adf-408f-bba7-9075e92fd669",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 637,
"referenced_widgets": [
"11f3190ad9cf410b9e68c77ff6cc0c76",
"f09c411feead44d5af661d6270f133bb",
"a349191e4ca14f88a7db5bef51ea61f3",
"467ba81e771b4861ab4f4efba9cefd89",
"ee6dc99ba7b242ca91ba9f7149255a93",
"9d87baf8169345d09dfe71e42cdd2015",
"e35bc30a886a40e297517e8552c9bd1e",
"4b415fa2e23c48c7abab097c0bbe2522",
"7229a14493674a3a94777fc2ca0e7cba",
"5b053231e2104fc3b3d5b2fb96f65671",
"5a2a3dbef64641a3836d5e36b2438e8c",
"0372eea2e66b430fa8da3d77e3855239",
"ff46db7abaff45b69a147c25c9843a38",
"5c8720db398d408c848b9848ec8ba031",
"1d00fb80d3f54004bd065f4c76ad68ab",
"da47dd1aaba14814b0d4af8c35ce1802",
"2931ea3e7310481ca6b6426d493add39",
"436eb5ba7b14477a9a58691676a19500",
"a680510bd7324bb68ca0d8c835899156",
"6aad094430a74bbda987e90dbcc9ea67",
"29c384b4b9b3418d9327cd18f7ab5769",
"d12d9e2d474e4da7969363738113acda",
"1452a5fe945241bf89ab1b0f76db1984",
"8050d6b7ed0c460a8b3c73d1bdd4da6e",
"f0bae27a3ead4e9fa8882afba86cb7fc",
"d8cc0f2c64c848038961ba8489d24a5d",
"5e88a2ed84db4a8990b93e50d9ed99da",
"086af4566a1e407f8349f94690a55feb",
"2a1eb381c73f4a5db15c6f9ee20e3fbc",
"2f218d661cee4deb9ce723dca24b2516",
"615058db3ada4904ab9f91e310c4ef05",
"2fb3e677a3bd4243a9afa02e03a0abd7",
"a0da0a17f54d4d94a47e55af9c457838",
"f2f3d8177fa444aba2d631816cee993e",
"9a5d248a631844db8675aa3ac9229d70",
"780a1099f2384d9e8eed0f489c64f77c",
"e78a63c9601541e28d08e92fbce92b40",
"8df044ced3554bb485ff0b65670167c1",
"25d797b5a7154220b32ca82d2e3c8f54",
"a9d240d2c9d645909686f5cbe291140b",
"563fee9512d4493fb0b91dd752740637",
"78f57fd057194d4abf56a0d5503cc650",
"28651f843d5e4a9d877778a85ca53461",
"bf2b3f49b9114dc783449beaaa11cf29",
"76458c250b854d2a8179267546bbcd87",
"6469c13c284c4613af47f7d15013b36a",
"c4811e8207844a018aca8a514a6ac73d",
"86d1a11a7826446aa833f791bf95efc8",
"9f6b860c2c9b449395e57c9201b3a9d0",
"c8a083f1bb494fcbb015b42e5e9f95ec",
"287a58e0b3614d40ac325e4c6c733364",
"f19e22f3971c4d8db24ba74f05973a71",
"2c844cfc647340108675be0a9f183f19",
"c6448112d0854a82a664eebb777ca3ac",
"76caca3ff923490187f0037ff346b7c1",
"ba35907dd4274c90a17d0ea5241696f9",
"5c0a013a9bfd49378e40a7e5ad0b2b88",
"7d09fe7cb36b4d06ae9884978e7fb7e6",
"e8772e19edee411db885db63295f67e0",
"b2a222fb8b074c37a88196150c160358",
"932742e77f664ac8951f8ab0726a2ed3",
"5a7abe7e18f543e99633d0fc8703dece",
"8d4ef09569b84851b30b1e21e2fb38b7",
"13ee4230d0ec4e998b7ddc1639752e36",
"24bf97f633b544a8b8cf6856d57e52ea",
"7b997afdd8ab4a96a346b760d79bd86c"
]
},
"deepnote_cell_type": "code",
"id": "e61zo2JtXGNX",
"outputId": "07f1e741-9c0e-4662-806e-96ddb75e7ed6"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"05/11/2023 16:44:27 - WARNING - main - Process rank: -1, device: cuda, n_gpu: 4, distributed training: False, 16-bits training: False\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2d200b9e5d14bf18a7591a66958c13c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)lve/main/config.json: 0%| | 0.00/642 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0f1b4dfc29b34622bb5fc6aa29eba9f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)okenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2ad8a37732524090b55e7b964ff5d458",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)olve/main/vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "49b41778ce374604b17db03bee7274ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8bb6b93cee50428498b3e0bf5bd5a2f6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading pytorch_model.bin: 0%| | 0.00/863M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c7e8710b6b8441e1ae69ecc0de8bb04c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)neration_config.json: 0%| | 0.00/124 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"05/11/2023 16:48:36 - INFO - main - Training/evaluation parameters <main.Args object at 0x7efb15dc9130>\n",
"05/11/2023 16:48:36 - INFO - main - Creating features from dataset file at cached\n",
"05/11/2023 16:48:36 - INFO - main - Saving features into cached file cached/gpt2_cached_lm_512\n",
"/home/suyeon/.conda/envs/seoul/lib/python3.8/site-packages/transformers/optimization.py:407: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set no_deprecation_warning=True to disable this warning\n",
" warnings.warn(\n",
"05/11/2023 16:48:36 - INFO - main - * Running training *\n",
"05/11/2023 16:48:36 - INFO - main - Num examples = 194\n",
"05/11/2023 16:48:36 - INFO - main - Num Epochs = 4\n",
"05/11/2023 16:48:36 - INFO - main - Instantaneous batch size per GPU = 4\n",
"05/11/2023 16:48:36 - INFO - main - Total train batch size (w. parallel, distributed & accumulation) = 16\n",
"05/11/2023 16:48:36 - INFO - main - Gradient Accumulation steps = 1\n",
"05/11/2023 16:48:36 - INFO - main - Total optimization steps = 48\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "56932399f1464f4898cc6a7c04b16796",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Epoch: 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f18275c3ecc24d26843c731bef9718ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Iteration: 0%| | 0/12 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/suyeon/.conda/envs/seoul/lib/python3.8/site-packages/torch/nn/parallel/functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n",
" warnings.warn('Was asked to gather along dimension 0, but all '\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "01f4acfbe87644e288478de3ca6b340b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Iteration: 0%| | 0/12 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c810d2de999040218f1ca776998967c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Iteration: 0%| | 0/12 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bdd780dc6a114ed4980b2a4a75dd845f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Iteration: 0%| | 0/12 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"05/11/2023 16:49:40 - INFO - main - global_step = 48, average loss = 2.4101458912094436\n",
"05/11/2023 16:49:40 - INFO - main - Saving model checkpoint to ./content/output-medium\n",
"05/11/2023 16:49:45 - INFO - main - Evaluate the following checkpoints: ['./content/output-medium']\n",
"05/11/2023 16:49:47 - INFO - main - Creating features from dataset file at cached\n",
"05/11/2023 16:49:47 - INFO - main - Saving features into cached file cached/gpt2_cached_lm_512\n",
"05/11/2023 16:49:47 - INFO - main - * Running evaluation *\n",
"05/11/2023 16:49:47 - INFO - main - Num examples = 22\n",
"05/11/2023 16:49:47 - INFO - main - Batch size = 16\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cda88713a60a436db4ae1abc68b09079",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"05/11/2023 16:49:48 - INFO - main - * Eval results *\n",
"05/11/2023 16:49:48 - INFO - main - perplexity = tensor(7.8732)\n"
]
},
{
"data": {
"text/plain": [
"{'perplexity
': tensor(7.8732)}"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"main(trn_df, val_df)"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00026-8b7d6f57-8a8b-4edc-b612-2e6bace87775",
"deepnote_cell_type": "markdown",
"id": "YRpQ_n2zXQj-"
},
"source": [
"## Load the Trained Model"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"cell_id": "00027-e90f86fc-a5b4-41c5-a30b-70d09c519eac",
"colab": {
"base_uri": "https://localhost:8080/"
},
"deepnote_cell_type": "code",
"id": "HGw3qgfaXQHX",
"outputId": "8629c457-b8d7-40d3-9c28-6d23a31bde2a"
},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')\n",
"model = AutoModelWithLMHead.from_pretrained('./content/output-medium')"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"cell_id": "00028-10e2eee2-c908-4363-a238-114ef84bd1ac",
"colab": {
"base_uri": "https://localhost:8080/"
},
"deepnote_cell_type": "code",
"id": "lAWsiAvNXbxd",
"outputId": "fa4083fe-189b-456c-b64b-e981f3908763"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set padding_side='left' when initializing the tokenizer.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
">> User: I'd like a general check-up.\n",
"Bot: I am currently at work so I will give you a checkup at lunch.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set padding_side='left' when initializing the tokenizer.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
">> User: I have severe head pain.\n",
"Bot: Take a rest after the checkup. If you feel better, take a rest.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set padding_side='left' when initializing the tokenizer.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
">> User: it keeps me awake at night. it's a dull, heavy pain.\n",
"Bot: Are you taking a rest?\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set padding_side='left' when initializing the tokenizer.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
">> User: Yes\n",
"Bot: Take it as soon as you feel itchy.\n"
]
}
],
"source": [
"# Let's chat for 4 lines\n",
"for step in range(4):\n",
" Q = input(">> User:")\n",
" # encode the new user input, add the eos_token and return a tensor in Pytorch\n",
" new_user_input_ids = tokenizer.encode(Q + tokenizer.eos_token, return_tensors='pt')\n",
" # print(new_user_input_ids)\n",
"\n",
" # append the new user input tokens to the chat history\n",
" bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids\n",
"\n",
" # generated a response while limiting the total chat history to 1000 tokens, \n",
" chat_history_ids = model.generate(\n",
" bot_input_ids, max_length=200,\n",
" pad_token_id=tokenizer.eos_token_id, \n",
" no_repeat_ngram_size=3, \n",
" do_sample=True, \n",
" top_k=100, \n",
" top_p=0.7,\n",
" temperature=0.8\n",
" )\n",
" \n",
" # pretty print last ouput tokens from bot\n",
" print(f">> User: {Q}")\n",
" print("Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00029-374b7bb4-c23b-47eb-8a1d-8dcedc2ce922",
"deepnote_cell_type": "markdown",
"id": "ANSQlQezXqwn"
},
"source": [
"## Push Model to Hugging Face"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cell_id": "00030-77ba7cd8-d44c-4428-99db-096858e0a2ed",
"colab": {
"base_uri": "https://localhost:8080/"
},
"deepnote_cell_type": "code",
"id": "VgnHRgHKXwDd",
"outputId": "b15594ac-7aca-4136-8110-b9ab4da83bb5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading package lists... Done\n",
"Building dependency tree \n",
"Reading state information... Done\n",
"git-lfs is already the newest version (2.3.4-1).\n",
"The following package was automatically installed and is no longer required:\n",
" libnvidia-common-460\n",
"Use 'sudo apt autoremove' to remove it.\n",
"0 upgraded, 0 newly installed, 0 to remove and 40 not upgraded.\n"
]
}
],
"source": [
"!sudo apt-get install git-lfs"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"cell_id": "00031-26784c7e-5e24-49f5-9ee4-44a34f5feaec",
"deepnote_cell_type": "code",
"id": "uhqMtvfmXei8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using tokenizers before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using tokenizers before the fork if possible\n",
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
}
],
"source": [
"!git config --global user.email "sy92160776@gmail.com"\n",
"# Tip: using the same email as your huggingface.co account will link your commits to your profile\n",
"!git config --global user.name "kangsuyeon01""
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"cell_id": "00032-f231ee5a-2498-4b7b-be97-395c83dd768f",
"deepnote_cell_type": "code",
"id": "tfUsrKR7YLT1"
},
"outputs": [],
"source": [
"MY_MODEL_NAME = 'DialoGPT-medium-HospitalBot'\n",
"with open('/home/suyeon/APIKEY/HuggingFace_API.txt', 'rt') as f:\n",
" HUGGINGFACE_API_KEY = f.read().strip()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"cell_id": "00033-c04acb90-874a-45bc-a722-b3af26bdaf79",
"deepnote_cell_type": "code",
"id": "_65nsiLcYNXI"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "83c657e56bb04fe7a5ecfcc1e1249ce0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload 1 LFS files: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48912912ee844571bc0fff5cbbe5e212",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/sillon/DialoGPT-medium-HospitalBot/commit/3a0577a28685b5a54c2714cc97d50e303f716331', commit_message='Upload tokenizer', commit_description='', oid='3a0577a28685b5a54c2714cc97d50e303f716331', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.push_to_hub(MY_MODEL_NAME, use_auth_token=HUGGINGFACE_API_KEY)\n",
"tokenizer.push_to_hub(MY_MODEL_NAME, use_auth_token=HUGGINGFACE_API_KEY)"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00034-577d32f5-0b28-4ae4-9712-8c8dfd369e61",
"deepnote_cell_type": "markdown",
"id": "D_XfXTCrZKmO"
},
"source": [
"## All Done!"
]
},
{
"cell_type": "markdown",
"metadata": {
"created_in_deepnote_cell": true,
"deepnote_cell_type": "markdown",
"tags": []
},
"source": [
"<a style='text-decoration:none;line-height:16px;display:flex;color:#5B5B62;padding:10px;justify-content:end;' href='https://deepnote.com?utm_source=created-in-deepnote-cell&projectId=40d91331-6c83-44f4-b569-6fa68d59a8f8' target="_blank">\n",
"Created in deepnote.com \n",
"Created in Deepnote"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Copy of model_train_upload_workflow.ipynb",
"provenance": []
},
"deepnote": {},
"deepnote_execution_queue": [],
"deepnote_notebook_id": "7e98f606-a46e-4036-880e-b85c68e463a1",
"kernelspec": {
"display_name": "Python 3.8.5 ('seoul')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"vscode": {
"interpreter": {
"hash": "66d0a405ae27e8958fb0b5f48aeb85cb7e87d44ab565835d4670697206b4f1fe"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0176fea419f643108556169b3e254593": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0372eea2e66b430fa8da3d77e3855239": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_5c8720db398d408c848b9848ec8ba031",
"IPY_MODEL_1d00fb80d3f54004bd065f4c76ad68ab",
"IPY_MODEL_da47dd1aaba14814b0d4af8c35ce1802"
],
"layout": "IPY_MODEL_ff46db7abaff45b69a147c25c9843a38"
}
},
"03c261a2820e4202872da868e2581463": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"086af4566a1e407f8349f94690a55feb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"10e451d78cea4b9c903f3acde2135bb4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e39c2b28e72f45168c98a18843d40e45",
"placeholder": "​",
"style": "IPY_MODEL_61edcfb6213e476db6515cb2dc0d443c",
"value": " 26.0/26.0 [00:00<00:00, 645B/s]"
}
},
"11f3190ad9cf410b9e68c77ff6cc0c76": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_a349191e4ca14f88a7db5bef51ea61f3",
"IPY_MODEL_467ba81e771b4861ab4f4efba9cefd89",
"IPY_MODEL_ee6dc99ba7b242ca91ba9f7149255a93"
],
"layout": "IPY_MODEL_f09c411feead44d5af661d6270f133bb"
}
},
"13ee4230d0ec4e998b7ddc1639752e36": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1452a5fe945241bf89ab1b0f76db1984": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f0bae27a3ead4e9fa8882afba86cb7fc",
"IPY_MODEL_d8cc0f2c64c848038961ba8489d24a5d",
"IPY_MODEL_5e88a2ed84db4a8990b93e50d9ed99da"
],
"layout": "IPY_MODEL_8050d6b7ed0c460a8b3c73d1bdd4da6e"
}
},
"14ec5c3b716a45719fc2432847ebd5e1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"189fa4cd2ebe446a8aa317d1176698af": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"19b3bf43ce624ffe91e93b081c17e230": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_98f053def4eb49c388c1b9ec5522fcb9",
"IPY_MODEL_1b1afa82c7ec434ea055b535b7633a20",
"IPY_MODEL_a8f8422f84e44af790f3df6f3a2b2fa0"
],
"layout": "IPY_MODEL_50645fb8d66248c9bd0fefa7dfedb63a"
}
},
"1b1afa82c7ec434ea055b535b7633a20": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_819e563dc615432dbae79291535531b2",
"max": 641,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4663b6836243405b8484d3b8cb4c142d",
"value": 641
}
},
"1d00fb80d3f54004bd065f4c76ad68ab": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_6aad094430a74bbda987e90dbcc9ea67",
"max": 93,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_a680510bd7324bb68ca0d8c835899156",
"value": 93
}
},
"24bf97f633b544a8b8cf6856d57e52ea": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"25d797b5a7154220b32ca82d2e3c8f54": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"28651f843d5e4a9d877778a85ca53461": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"287a58e0b3614d40ac325e4c6c733364": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2931ea3e7310481ca6b6426d493add39": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"29c384b4b9b3418d9327cd18f7ab5769": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"2a1eb381c73f4a5db15c6f9ee20e3fbc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2c844cfc647340108675be0a9f183f19": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2d938445fa094302996261c3a0f4b449": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2f218d661cee4deb9ce723dca24b2516": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"2fb3e677a3bd4243a9afa02e03a0abd7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"36a3a76061e247ba83910633730b3d79": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3c57ab09a2d243c49113d5440924cbf8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d661f6a49f9143cab40226922aaecbd5",
"placeholder": "​",
"style": "IPY_MODEL_b4aa1dc7e7a54199a26917cfa1b80a0d",
"value": "Downloading: 100%"
}
},
"3e76e49012cd49728326a577475f2613": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"42792f7537d44a8cb05e2f831115c38e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c9853de7562643268ca86d000deb8a57",
"placeholder": "​",
"style": "IPY_MODEL_189fa4cd2ebe446a8aa317d1176698af",
"value": "Downloading: 100%"
}
},
"436eb5ba7b14477a9a58691676a19500": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4663b6836243405b8484d3b8cb4c142d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"467ba81e771b4861ab4f4efba9cefd89": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7229a14493674a3a94777fc2ca0e7cba",
"max": 4,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4b415fa2e23c48c7abab097c0bbe2522",
"value": 4
}
},
"4687279b5213426fa4816a1aef931965": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4a5b0d20fa5841639e0efb6fac78f9b5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"4b415fa2e23c48c7abab097c0bbe2522": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"50645fb8d66248c9bd0fefa7dfedb63a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"563fee9512d4493fb0b91dd752740637": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"5a2a3dbef64641a3836d5e36b2438e8c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5a7abe7e18f543e99633d0fc8703dece": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5b053231e2104fc3b3d5b2fb96f65671": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5c0a013a9bfd49378e40a7e5ad0b2b88": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5c378b98a59a42f6ba0241b490999214": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4687279b5213426fa4816a1aef931965",
"placeholder": "​",
"style": "IPY_MODEL_7438ec47869545d09fa29410a29a8056",
"value": "Downloading: 100%"
}
},
"5c8720db398d408c848b9848ec8ba031": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_436eb5ba7b14477a9a58691676a19500",
"placeholder": "​",
"style": "IPY_MODEL_2931ea3e7310481ca6b6426d493add39",
"value": "Iteration: 100%"
}
},
"5e624b2d080f45ce896057fb6f32da50": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5e88a2ed84db4a8990b93e50d9ed99da": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a0da0a17f54d4d94a47e55af9c457838",
"placeholder": "​",
"style": "IPY_MODEL_2fb3e677a3bd4243a9afa02e03a0abd7",
"value": " 93/93 [00:58<00:00, 1.74it/s]"
}
},
"615058db3ada4904ab9f91e310c4ef05": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"61edcfb6213e476db6515cb2dc0d443c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"632bf981f33b4afc806c32376f5f8890": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6469c13c284c4613af47f7d15013b36a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"696af76a97b84aaab5c7ab4db43d1e5a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6aad094430a74bbda987e90dbcc9ea67": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7229a14493674a3a94777fc2ca0e7cba": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7438ec47869545d09fa29410a29a8056": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"76458c250b854d2a8179267546bbcd87": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_c4811e8207844a018aca8a514a6ac73d",
"IPY_MODEL_86d1a11a7826446aa833f791bf95efc8",
"IPY_MODEL_9f6b860c2c9b449395e57c9201b3a9d0"
],
"layout": "IPY_MODEL_6469c13c284c4613af47f7d15013b36a"
}
},
"76caca3ff923490187f0037ff346b7c1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"780a1099f2384d9e8eed0f489c64f77c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a9d240d2c9d645909686f5cbe291140b",
"placeholder": "​",
"style": "IPY_MODEL_25d797b5a7154220b32ca82d2e3c8f54",
"value": "Iteration: 100%"
}
},
"78f57fd057194d4abf56a0d5503cc650": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7b997afdd8ab4a96a346b760d79bd86c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7d09fe7cb36b4d06ae9884978e7fb7e6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5a7abe7e18f543e99633d0fc8703dece",
"placeholder": "​",
"style": "IPY_MODEL_932742e77f664ac8951f8ab0726a2ed3",
"value": "Evaluating: 100%"
}
},
"8050d6b7ed0c460a8b3c73d1bdd4da6e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8134df3bab414d2f9820492ba5b1855d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_696af76a97b84aaab5c7ab4db43d1e5a",
"max": 351265583,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_952840fc90b04abbb473f28a096eb52e",
"value": 351265583
}
},
"819e563dc615432dbae79291535531b2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"82beeb5a7cd94155a169da2d5ee3bae4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"86d1a11a7826446aa833f791bf95efc8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2c844cfc647340108675be0a9f183f19",
"max": 93,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f19e22f3971c4d8db24ba74f05973a71",
"value": 93
}
},
"896432acc69d4f15bf100aad978b633a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_632bf981f33b4afc806c32376f5f8890",
"placeholder": "​",
"style": "IPY_MODEL_b7e3a1799b9248e0b5bd709537194fbd",
"value": "Downloading: 100%"
}
},
"8d22ee6e39174f5f8e342a156a323ce3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8d4ef09569b84851b30b1e21e2fb38b7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"8df044ced3554bb485ff0b65670167c1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_bf2b3f49b9114dc783449beaaa11cf29",
"placeholder": "​",
"style": "IPY_MODEL_28651f843d5e4a9d877778a85ca53461",
"value": " 93/93 [00:59<00:00, 1.60it/s]"
}
},
"924d0b23a20f423ea28c03b63e55d5c1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_5c378b98a59a42f6ba0241b490999214",
"IPY_MODEL_c3b2f4a71f664d4ebcd237b2ccb4c72d",
"IPY_MODEL_10e451d78cea4b9c903f3acde2135bb4"
],
"layout": "IPY_MODEL_ea51c7ae24354b31ad5fa724700aed0e"
}
},
"932742e77f664ac8951f8ab0726a2ed3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"93fc31bef2cd49f3a703fc6e2f879a26": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"952840fc90b04abbb473f28a096eb52e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"97cd5eea048e4fdb8e445a65db179e98": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d7d3203f5dd845a58d9e3a109a669afb",
"max": 1042301,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_82beeb5a7cd94155a169da2d5ee3bae4",
"value": 1042301
}
},
"98f053def4eb49c388c1b9ec5522fcb9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0176fea419f643108556169b3e254593",
"placeholder": "​",
"style": "IPY_MODEL_36a3a76061e247ba83910633730b3d79",
"value": "Downloading: 100%"
}
},
"9a5d248a631844db8675aa3ac9229d70": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9b24b05dfcee4e2d8795e13efd3256c9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_fd015f3534ac4c4e9dbaf6a29d699558",
"placeholder": "​",
"style": "IPY_MODEL_3e76e49012cd49728326a577475f2613",
"value": " 456k/456k [00:00<00:00, 1.57MB/s]"
}
},
"9c8a3d9e8db048a5836fbf901df12a11": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9d87baf8169345d09dfe71e42cdd2015": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"9f2c915e08f24f58b33baad1a9920bd3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_896432acc69d4f15bf100aad978b633a",
"IPY_MODEL_bb7cc84d68f64576a9cc3b64422ec172",
"IPY_MODEL_9b24b05dfcee4e2d8795e13efd3256c9"
],
"layout": "IPY_MODEL_c74a065d2ffc442490cb74dc26cfe413"
}
},
"9f6b860c2c9b449395e57c9201b3a9d0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_76caca3ff923490187f0037ff346b7c1",
"placeholder": "​",
"style": "IPY_MODEL_c6448112d0854a82a664eebb777ca3ac",
"value": " 93/93 [00:58<00:00, 1.47it/s]"
}
},
"a0da0a17f54d4d94a47e55af9c457838": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a349191e4ca14f88a7db5bef51ea61f3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e35bc30a886a40e297517e8552c9bd1e",
"placeholder": "​",
"style": "IPY_MODEL_9d87baf8169345d09dfe71e42cdd2015",
"value": "Epoch: 100%"
}
},
"a680510bd7324bb68ca0d8c835899156": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"a8f8422f84e44af790f3df6f3a2b2fa0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_8d22ee6e39174f5f8e342a156a323ce3",
"placeholder": "​",
"style": "IPY_MODEL_4a5b0d20fa5841639e0efb6fac78f9b5",
"value": " 641/641 [00:00<00:00, 12.0kB/s]"
}
},
"a9d240d2c9d645909686f5cbe291140b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b2a222fb8b074c37a88196150c160358": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7b997afdd8ab4a96a346b760d79bd86c",
"placeholder": "​",
"style": "IPY_MODEL_24bf97f633b544a8b8cf6856d57e52ea",
"value": " 10/10 [00:01<00:00, 5.51it/s]"
}
},
"b4aa1dc7e7a54199a26917cfa1b80a0d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"b7e3a1799b9248e0b5bd709537194fbd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ba35907dd4274c90a17d0ea5241696f9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_7d09fe7cb36b4d06ae9884978e7fb7e6",
"IPY_MODEL_e8772e19edee411db885db63295f67e0",
"IPY_MODEL_b2a222fb8b074c37a88196150c160358"
],
"layout": "IPY_MODEL_5c0a013a9bfd49378e40a7e5ad0b2b88"
}
},
"bb7cc84d68f64576a9cc3b64422ec172": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9c8a3d9e8db048a5836fbf901df12a11",
"max": 456318,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_fd1253ab10be4056aa861f225148985e",
"value": 456318
}
},
"bf2b3f49b9114dc783449beaaa11cf29": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c2913e7dc3a74330bfcdde47486bee52": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_42792f7537d44a8cb05e2f831115c38e",
"IPY_MODEL_8134df3bab414d2f9820492ba5b1855d",
"IPY_MODEL_ff43f075183f4e93ae151bc4ca55015b"
],
"layout": "IPY_MODEL_f9cf6c10f6904550a9f7dd7cac79282b"
}
},
"c3b2f4a71f664d4ebcd237b2ccb4c72d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5e624b2d080f45ce896057fb6f32da50",
"max": 26,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f776efddb638452fa783a593d75b39c2",
"value": 26
}
},
"c42e773418c44a58a024403c78a2d9c2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c4811e8207844a018aca8a514a6ac73d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_287a58e0b3614d40ac325e4c6c733364",
"placeholder": "​",
"style": "IPY_MODEL_c8a083f1bb494fcbb015b42e5e9f95ec",
"value": "Iteration: 100%"
}
},
"c6448112d0854a82a664eebb777ca3ac": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c74a065d2ffc442490cb74dc26cfe413": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c8a083f1bb494fcbb015b42e5e9f95ec": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c9853de7562643268ca86d000deb8a57": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cfd7ee6215074d319467df184a3fa1a3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2d938445fa094302996261c3a0f4b449",
"placeholder": "​",
"style": "IPY_MODEL_03c261a2820e4202872da868e2581463",
"value": " 1.04M/1.04M [00:00<00:00, 1.06MB/s]"
}
},
"d12d9e2d474e4da7969363738113acda": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d661f6a49f9143cab40226922aaecbd5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d7d3203f5dd845a58d9e3a109a669afb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d8cc0f2c64c848038961ba8489d24a5d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_615058db3ada4904ab9f91e310c4ef05",
"max": 93,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_2f218d661cee4deb9ce723dca24b2516",
"value": 93
}
},
"da47dd1aaba14814b0d4af8c35ce1802": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d12d9e2d474e4da7969363738113acda",
"placeholder": "​",
"style": "IPY_MODEL_29c384b4b9b3418d9327cd18f7ab5769",
"value": " 93/93 [00:58<00:00, 1.40it/s]"
}
},
"e35bc30a886a40e297517e8552c9bd1e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e39c2b28e72f45168c98a18843d40e45": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e78a63c9601541e28d08e92fbce92b40": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_78f57fd057194d4abf56a0d5503cc650",
"max": 93,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_563fee9512d4493fb0b91dd752740637",
"value": 93
}
},
"e8772e19edee411db885db63295f67e0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_13ee4230d0ec4e998b7ddc1639752e36",
"max": 10,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_8d4ef09569b84851b30b1e21e2fb38b7",
"value": 10
}
},
"ea51c7ae24354b31ad5fa724700aed0e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ee6dc99ba7b242ca91ba9f7149255a93": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5a2a3dbef64641a3836d5e36b2438e8c",
"placeholder": "​",
"style": "IPY_MODEL_5b053231e2104fc3b3d5b2fb96f65671",
"value": " 4/4 [03:55<00:00, 58.77s/it]"
}
},
"f09c411feead44d5af661d6270f133bb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f0bae27a3ead4e9fa8882afba86cb7fc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2a1eb381c73f4a5db15c6f9ee20e3fbc",
"placeholder": "​",
"style": "IPY_MODEL_086af4566a1e407f8349f94690a55feb",
"value": "Iteration: 100%"
}
},
"f19e22f3971c4d8db24ba74f05973a71": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"f2f3d8177fa444aba2d631816cee993e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_780a1099f2384d9e8eed0f489c64f77c",
"IPY_MODEL_e78a63c9601541e28d08e92fbce92b40",
"IPY_MODEL_8df044ced3554bb485ff0b65670167c1"
],
"layout": "IPY_MODEL_9a5d248a631844db8675aa3ac9229d70"
}
},
"f5f9c8c0e8814258a32d5cf60c49f640": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_3c57ab09a2d243c49113d5440924cbf8",
"IPY_MODEL_97cd5eea048e4fdb8e445a65db179e98",
"IPY_MODEL_cfd7ee6215074d319467df184a3fa1a3"
],
"layout": "IPY_MODEL_14ec5c3b716a45719fc2432847ebd5e1"
}
},
"f776efddb638452fa783a593d75b39c2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"f9cf6c10f6904550a9f7dd7cac79282b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fd015f3534ac4c4e9dbaf6a29d699558": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fd1253ab10be4056aa861f225148985e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"ff43f075183f4e93ae151bc4ca55015b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c42e773418c44a58a024403c78a2d9c2",
"placeholder": "​",
"style": "IPY_MODEL_93fc31bef2cd49f3a703fc6e2f879a26",
"value": " 351M/351M [00:12<00:00, 27.9MB/s]"
}
},
"ff46db7abaff45b69a147c25c9843a38": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}

728x90
반응형