{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00000-e1532e6c-1d68-438a-9ae3-e3d5d228be0b",
"deepnote_cell_type": "markdown",
"id": "VTze-VbeU1c0"
},
"source": [
"# Fine-tune a DialoGPT model\n",
"\n",
"Adapted from the notebook in this Medium post."
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00001-f1561e9e-4ec2-471c-947d-1fb1e9006488",
"deepnote_cell_type": "markdown",
"id": "Y17kuzFNUSrZ"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"cell_id": "00005-59bb6055-765e-499d-b35a-b84721c6fd19",
"deepnote_cell_type": "code",
"id": "dnv5kT-mLsB-"
},
"outputs": [],
"source": [
"# all the imports\n",
"\n",
"import glob\n",
"import logging\n",
"import os\n",
"import pickle\n",
"import random\n",
"import re\n",
"import shutil\n",
"from typing import Dict, List, Tuple\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from torch.nn.utils.rnn import pad_sequence\n",
"from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler\n",
"from torch.utils.data.distributed import DistributedSampler\n",
"from tqdm.notebook import tqdm, trange\n",
"\n",
"from pathlib import Path\n",
"\n",
"from transformers import (\n",
" MODEL_WITH_LM_HEAD_MAPPING,\n",
" WEIGHTS_NAME,\n",
" AdamW,\n",
" AutoConfig,\n",
" PreTrainedModel,\n",
" PreTrainedTokenizer,\n",
" get_linear_schedule_with_warmup,\n",
")\n",
"\n",
"\n",
"try:\n",
" from torch.utils.tensorboard import SummaryWriter\n",
"except ImportError:\n",
" from tensorboardX import SummaryWriter"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00006-7f2ee539-7826-4795-b2a6-2d581899b8ad",
"deepnote_cell_type": "markdown",
"id": "BmrbGB8aUmBm"
},
"source": [
"## Get Data from Kaggle"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"cell_id": "00009-47197517-46a5-4c2a-adbf-fa563187bfe5",
"deepnote_cell_type": "code",
"id": "RXdJTSVwWGHj"
},
"outputs": [],
"source": [
"data = pd.read_csv('./data/hospital.csv',encoding='cp949')"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"cell_id": "00010-53c4a4f6-97f0-4297-b4e1-95dbb2dda8dc",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 303
},
"deepnote_cell_type": "code",
"id": "h6kGx-9eG7qA",
"outputId": "6091a58a-79c2-453d-b792-6eddaa40ec74"
},
"outputs": [
{
"data": {
"text/html": [
"
"\n",
"<table border="1" class="dataframe">\n",
" \n",
" <tr style="text-align: right;">\n",
"
"
"
"
"
"
"
"
" \n",
" \n",
" \n",
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" \n",
"\n",
"
],
"text/plain": [
" 대분류 소분류 상황 Set Nr. 발화자 \\n",
"265 일상대화 병원 검사실/검진실에 있는 상황 11518 B-1 \n",
"78 일상대화 병원 접수/수납하는 상황 11471 A-2 \n",
"347 일상대화 병원 담당의사가 병실 회진을 할 때 환자와의 상담 내용 11538 B-2 \n",
"255 일상대화 병원 검사실/검진실에 있는 상황 11515 B-2 \n",
"327 일상대화 병원 담당의사가 병실 회진을 할 때 환자와의 상담 내용 11533 B-2 \n",
"291 일상대화 병원 병실 내에서 다른환자들과의 대화 11524 B-2 \n",
"\n",
" 원문 \\n",
"265 오늘 응급으로 급하게 촬영하는 환자가 계셔서 다들 뒤로 밀려났어요. \n",
"78 오전에는 진료가 힘든 것 같아요. \n",
"347 남편이 불편하다고 하면 바로 알려 드릴게요. \n",
"255 수면제 투약할 때 미리 알려주세요. \n",
"327 그러면, 외박하는 당일날에 진통약도 함께 처방받아서 받아 가세요. \n",
"291 헬멧을 사용하고 있어서 머리는 안 다쳤는데, 다리 말고 몸이 많이 쓸렸어요. \n",
"\n",
" 번역문 \n",
"265 We have a patient taking it in an emergency, s... \n",
"78 It seems he won't make it to consultations in ... \n",
"347 I will let you know when my husband says so. \n",
"255 Let me know in advance when administering it. \n",
"327 Then, get painkillers prescribed on that day a... \n",
"291 I was wearing a helmet so I didn't hurt my hea... "
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.sample(6)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_21834/1955126597.py:2: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" data['발화자'][i] = data['발화자'][i].replace("A-1","A")\n",
"/tmp/ipykernel_21834/1955126597.py:3: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" data['발화자'][i] = data['발화자'][i].replace("A-2","A")\n"
]
}
],
"source": [
"for i in range(len(data)):\n",
" data['발화자'][i] = data['발화자'][i].replace("A-1","A")\n",
" data['발화자'][i] = data['발화자'][i].replace("A-2","A")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"\n",
"<table border="1" class="dataframe">\n",
" \n",
" <tr style="text-align: right;">\n",
"
"
"
"
"
"
"
"
" \n",
" \n",
" \n",
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" \n",
"\n",
"
],
"text/plain": [
" 대분류 소분류 상황 Set Nr. 발화자 \\n",
"0 일상대화 병원 증상을 묻고 답하는 상황 11452 A \n",
"1 일상대화 병원 증상을 묻고 답하는 상황 11452 B-1 \n",
"2 일상대화 병원 증상을 묻고 답하는 상황 11452 A \n",
"3 일상대화 병원 증상을 묻고 답하는 상황 11452 B-2 \n",
"4 일상대화 병원 증상을 묻고 답하는 상황 11453 A \n",
"\n",
" 원문 \\n",
"0 밥을 먹었는데도 속이 메스꺼워서 병원에 오게 되었어요. \n",
"1 속이 좋지 않은 것 말고 다른 증상은 없으신가요? \n",
"2 속도 안 좋지만, 자꾸 구토할 듯한 느낌이 나요. \n",
"3 요즘 장염이 유행이라, 장염이 가능성이 있겠어요. \n",
"4 머리가 깨질 듯이 아프고, 누워 있어도 천장이 빙빙 도는 느낌이 들어요. \n",
"\n",
" 번역문 \n",
"0 I came to the hospital because I feel nauseate... \n",
"1 Do you have any other symptoms other than feel... \n",
"2 I feel like vomiting right now. \n",
"3 There's a high chance of enteritis. \n",
"4 I have a terrible headache and it feels like t... "
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"cell_id": "00011-f38f40d4-6f1b-4df2-b55d-85e8ffb49905",
"deepnote_cell_type": "code",
"id": "PG8v6--qWUwj"
},
"outputs": [],
"source": [
"CHARACTER_NAME = 'A'"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"cell_id": "00012-ae1869ae-3d0b-454e-9d44-683576df1b9e",
"deepnote_cell_type": "code",
"id": "GZUcEMd2WLDT"
},
"outputs": [],
"source": [
"contexted = []\n",
"\n",
"# context window of size 7\n",
"n = 7\n",
"\n",
"for i in data[data.발화자 == CHARACTER_NAME].index:\n",
" if i < n:\n",
" continue\n",
" row = []\n",
" prev = i - 1 - n # we additionally substract 1, so row will contain current responce and 7 previous responces \n",
" for j in range(i, prev, -1):\n",
" row.append(data.번역문[j])\n",
" contexted.append(row)\n",
"\n",
"columns = ['response', 'context'] \n",
"columns = columns + ['context/' + str(i) for i in range(n - 1)]\n",
"\n",
"df = pd.DataFrame.from_records(contexted, columns=columns)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"cell_id": "00013-b0d9519f-21ff-49b1-8e1f-a17515493746",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 558
},
"deepnote_cell_type": "code",
"id": "4T5OlNZHUxij",
"outputId": "1a65fe43-27f0-40a8-da36-303342a82a28"
},
"outputs": [
{
"data": {
"text/html": [
"
"\n",
"<table border="1" class="dataframe">\n",
" \n",
" <tr style="text-align: right;">\n",
"
"
"
"
"
"
"
"
"
" \n",
" \n",
" \n",
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" \n",
"\n",
"
],
"text/plain": [
" response \\n",
"150 Did you see my spoon holder by any chance? \n",
"53 Moms who are contacting newly born babies may ... \n",
"103 Take your top off then I will inject on your l... \n",
"186 You have quite a lot of medicine today. \n",
"198 Can you give me over-the-counter cold preparat... \n",
"105 Do not rub the alcohol cotton, but keep pressi... \n",
"\n",
" context \\n",
"150 No, I will just see the 9 o'clock news so let'... \n",
"53 I am here to see mom who gave birth to my brot... \n",
"103 My sleeves are too tight to roll up so I guess... \n",
"186 I never knew that there is a cough patch. \n",
"198 Usually, bruises naturally disappear so you ha... \n",
"105 I will disinfect before taking the needle off. \n",
"\n",
" context/0 \\n",
"150 I was going to watch the evening soap opera, b... \n",
"53 Children under the age of 13 cannot visit the ... \n",
"103 This injection is given on the arm, not in the... \n",
"186 This patch expands the bronchial tubes before ... \n",
"198 My baby is 24months old. Can she have it applied? \n",
"105 The fluid is all in so please take off the nee... \n",
"\n",
" context/1 \\n",
"150 I am waiting for the 8 o'clock news, but is th... \n",
"53 I feel uncomfortable when moving with the IV b... \n",
"103 I will do my best to inject on the back of her... \n",
"186 No, it is my first time using it. How can I us... \n",
"198 We have a liniment for a bruise, but it is onl... \n",
"105 I am left-handed so inject on my right arm. \n",
"\n",
" context/2 \\n",
"150 Can I change the television channel? \n",
"53 Just in case, I would like to get it done now. \n",
"103 If you don't find it on the back of her hand, ... \n",
"186 You have received a cough patch on the prescri... \n",
"198 My baby jumped from the sofa, bumped her foreh... \n",
"105 Take your top off then I will inject on your l... \n",
"\n",
" context/3 \\n",
"150 I asked the doctor and she told me it is 80,00... \n",
"53 I thought I would get the IV in the evening bu... \n",
"103 Let me find a spot for injection on the back o... \n",
"186 The half-sized pill is missing in lunch medicine. \n",
"198 I never knew there were steroids in it. I shou... \n",
"105 My sleeves are too tight to roll up so I guess... \n",
"\n",
" context/4 \\n",
"150 Do you know how much a double room costs? \n",
"53 Before the operation, I will take the vessel a... \n",
"103 The baby will be injected a fluid but I don't ... \n",
"186 There is a sleeping pill ingredient in the mor... \n",
"198 A steroid is contained in the liniment so don'... \n",
"105 This injection is given on the arm, not in the... \n",
"\n",
" context/5 \n",
"150 Double rooms are too expensive even with insur... \n",
"53 I am glad to see you recovered soon. \n",
"103 That is a very simple treatment method. \n",
"186 What kind of ingredients are taken out in the ... \n",
"198 How often do I apply the liniment? \n",
"105 I will do my best to inject on the back of her... "
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.sample(6)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"cell_id": "00014-d864c0fe-77a2-401d-8c3c-c554ebba3f3a",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 510
},
"deepnote_cell_type": "code",
"id": "NGy0MxMQVIAP",
"outputId": "65830c0f-f8e3-4b1b-ed9e-b2e9574d306f"
},
"outputs": [
{
"data": {
"text/html": [
"
"\n",
"<table border="1" class="dataframe">\n",
" \n",
" <tr style="text-align: right;">\n",
"
"
"
"
"
"
"
"
"
" \n",
" \n",
" \n",
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" \n",
"\n",
"
],
"text/plain": [
" response \\n",
"35 It seems he won't make it to consultations in ... \n",
"23 From the beginning of this month, infants unde... \n",
"166 I heard from the nurse that you had painkiller... \n",
"14 I feel itchy and it gets better when I cool it... \n",
"19 Do you want to be registered to a female doctor? \n",
"\n",
" context \\n",
"35 The operation must be a long one. \n",
"23 That sounds way too low, but why? \n",
"166 I think I will feel better if I feel less bloa... \n",
"14 For now, it seems that the bruise is inside th... \n",
"19 I want consultation at gynecology and do you h... \n",
"\n",
" context/0 \\n",
"35 The doctor in charge of you is scheduled for a... \n",
"23 The total consultation fee is 800 won. \n",
"166 Let's keep administering the medicine and I wi... \n",
"14 I see a bruise getting bigger on my toenail. W... \n",
"19 At which department do you want a consultation? \n",
"\n",
" context/1 \\n",
"35 A doctor with a short waiting list, please. \n",
"23 There are 15 people and I think you will have ... \n",
"166 I felt better after administering the medicine... \n",
"14 Your toe is moving a little so there is nothin... \n",
"19 You don't need to write down the address and c... \n",
"\n",
" context/2 \\n",
"35 To which room do you want to be assigned? \n",
"23 How many people are awaiting? \n",
"166 Do you feel less bloated than yesterday? \n",
"14 I dropped a glass container on the top of my f... \n",
"19 There is an address section as well. Should I ... \n",
"\n",
" context/3 \\n",
"35 Can you assign me another doctor today? \n",
"23 He has a quite long waiting list, so are you o... \n",
"166 Always be well and I wish you to recover soon. \n",
"14 It may happen when you overuse your hands but ... \n",
"19 Write down your name, contact information and ... \n",
"\n",
" context/4 \\n",
"35 Shall I receive you to doctor number 5 in char... \n",
"23 Can I get a consultation from the doctor of de... \n",
"166 You took great care of me and I am sorry to he... \n",
"14 Can the ligament be extended if the hands are ... \n",
"19 This is my first time getting a consultation a... \n",
"\n",
" context/5 \n",
"35 Hold on, let me pay with a card. \n",
"23 Please assign a female doctor with a few patie... \n",
"166 I should have informed you in advance but I ha... \n",
"14 You used your hand a lot bringing up your chil... \n",
"19 These days, people living in new houses get it... "
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trn_df, val_df = train_test_split(df, test_size=0.1)\n",
"trn_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"cell_id": "00015-bfc84225-09f2-4398-9ed6-c76fe23bf9ae",
"deepnote_cell_type": "code",
"id": "aEeJQlAKWtiJ"
},
"outputs": [],
"source": [
"# create dataset suitable for our model\n",
"def construct_conv(row, tokenizer, eos = True):\n",
" flatten = lambda l: [item for sublist in l for item in sublist]\n",
" conv = list(reversed([tokenizer.encode(x) + [tokenizer.eos_token_id] for x in row]))\n",
" conv = flatten(conv)\n",
" return conv\n",
"\n",
"class ConversationDataset(Dataset):\n",
" def init(self, tokenizer: PreTrainedTokenizer, args, df, block_size=512):\n",
"\n",
" block_size = block_size - (tokenizer.model_max_length - tokenizer.max_len_single_sentence)\n",
"\n",
" directory = args.cache_dir\n",
" cached_features_file = os.path.join(\n",
" directory, args.model_type + "cached_lm_" + str(block_size)\n",
" )\n",
"\n",
" if os.path.exists(cached_features_file) and not args.overwrite_cache:\n",
" logger.info("Loading features from cached file %s", cached_features_file)\n",
" with open(cached_features_file, "rb") as handle:\n",
" self.examples = pickle.load(handle)\n",
" else:\n",
" logger.info("Creating features from dataset file at %s", directory)\n",
"\n",
" self.examples = []\n",
" for , row in df.iterrows():\n",
" conv = construct_conv(row, tokenizer)\n",
" self.examples.append(conv)\n",
"\n",
" logger.info("Saving features into cached file %s", cached_features_file)\n",
" with open(cached_features_file, "wb") as handle:\n",
" pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)\n",
"\n",
" def _len(self):\n",
" return len(self.examples)\n",
"\n",
" def getitem(self, item):\n",
" return torch.tensor(self.examples[item], dtype=torch.long)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"cell_id": "00016-e242a320-fac6-427e-9c66-9510fafa112d",
"deepnote_cell_type": "code",
"id": "-3iHwoKlWyrs"
},
"outputs": [],
"source": [
"# Cacheing and storing of data/checkpoints\n",
"\n",
"def load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False):\n",
" return ConversationDataset(tokenizer, args, df_val if evaluate else df_trn)\n",
"\n",
"\n",
"def set_seed(args):\n",
" random.seed(args.seed)\n",
" np.random.seed(args.seed)\n",
" torch.manual_seed(args.seed)\n",
" if args.n_gpu > 0:\n",
" torch.cuda.manual_seed_all(args.seed)\n",
"\n",
"\n",
"def sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:\n",
" ordering_and_checkpoint_path = []\n",
"\n",
" glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-".format(checkpoint_prefix)))\n",
"\n",
" for path in glob_checkpoints:\n",
" if use_mtime:\n",
" ordering_and_checkpoint_path.append((os.path.getmtime(path), path))\n",
" else:\n",
" regex_match = re.match(".{}-([0-9]+)".format(checkpoint_prefix), path)\n",
" if regex_match and regex_match.groups():\n",
" ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))\n",
"\n",
" checkpoints_sorted = sorted(ordering_and_checkpoint_path)\n",
" checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]\n",
" return checkpoints_sorted\n",
"\n",
"\n",
"def rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:\n",
" if not args.save_total_limit:\n",
" return\n",
" if args.save_total_limit <= 0:\n",
" return\n",
"\n",
" # Check if we should delete older checkpoint(s)\n",
" checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)\n",
" if len(checkpoints_sorted) <= args.save_total_limit:\n",
" return\n",
"\n",
" number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)\n",
" checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]\n",
" for checkpoint in checkpoints_to_be_deleted:\n",
" logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))\n",
" shutil.rmtree(checkpoint)"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00017-712df464-f1b8-4a19-851a-31958d24fe29",
"deepnote_cell_type": "markdown",
"id": "EEDdTJTqUwZJ"
},
"source": [
"## Build Model"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"cell_id": "00018-cbd90a4b-637d-405c-be7a-eb0b92d7db4b",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 231,
"referenced_widgets": [
"924d0b23a20f423ea28c03b63e55d5c1",
"ea51c7ae24354b31ad5fa724700aed0e",
"5c378b98a59a42f6ba0241b490999214",
"c3b2f4a71f664d4ebcd237b2ccb4c72d",
"10e451d78cea4b9c903f3acde2135bb4",
"7438ec47869545d09fa29410a29a8056",
"4687279b5213426fa4816a1aef931965",
"f776efddb638452fa783a593d75b39c2",
"5e624b2d080f45ce896057fb6f32da50",
"61edcfb6213e476db6515cb2dc0d443c",
"e39c2b28e72f45168c98a18843d40e45",
"19b3bf43ce624ffe91e93b081c17e230",
"50645fb8d66248c9bd0fefa7dfedb63a",
"98f053def4eb49c388c1b9ec5522fcb9",
"1b1afa82c7ec434ea055b535b7633a20",
"a8f8422f84e44af790f3df6f3a2b2fa0",
"36a3a76061e247ba83910633730b3d79",
"0176fea419f643108556169b3e254593",
"4663b6836243405b8484d3b8cb4c142d",
"819e563dc615432dbae79291535531b2",
"4a5b0d20fa5841639e0efb6fac78f9b5",
"8d22ee6e39174f5f8e342a156a323ce3",
"f5f9c8c0e8814258a32d5cf60c49f640",
"14ec5c3b716a45719fc2432847ebd5e1",
"3c57ab09a2d243c49113d5440924cbf8",
"97cd5eea048e4fdb8e445a65db179e98",
"cfd7ee6215074d319467df184a3fa1a3",
"b4aa1dc7e7a54199a26917cfa1b80a0d",
"d661f6a49f9143cab40226922aaecbd5",
"82beeb5a7cd94155a169da2d5ee3bae4",
"d7d3203f5dd845a58d9e3a109a669afb",
"03c261a2820e4202872da868e2581463",
"2d938445fa094302996261c3a0f4b449",
"9f2c915e08f24f58b33baad1a9920bd3",
"c74a065d2ffc442490cb74dc26cfe413",
"896432acc69d4f15bf100aad978b633a",
"bb7cc84d68f64576a9cc3b64422ec172",
"9b24b05dfcee4e2d8795e13efd3256c9",
"b7e3a1799b9248e0b5bd709537194fbd",
"632bf981f33b4afc806c32376f5f8890",
"fd1253ab10be4056aa861f225148985e",
"9c8a3d9e8db048a5836fbf901df12a11",
"3e76e49012cd49728326a577475f2613",
"fd015f3534ac4c4e9dbaf6a29d699558",
"c2913e7dc3a74330bfcdde47486bee52",
"f9cf6c10f6904550a9f7dd7cac79282b",
"42792f7537d44a8cb05e2f831115c38e",
"8134df3bab414d2f9820492ba5b1855d",
"ff43f075183f4e93ae151bc4ca55015b",
"189fa4cd2ebe446a8aa317d1176698af",
"c9853de7562643268ca86d000deb8a57",
"952840fc90b04abbb473f28a096eb52e",
"696af76a97b84aaab5c7ab4db43d1e5a",
"93fc31bef2cd49f3a703fc6e2f879a26",
"c42e773418c44a58a024403c78a2d9c2"
]
},
"deepnote_cell_type": "code",
"id": "r2cE0fY5UHpz",
"outputId": "e9faf138-18e1-4cb8-d016-e6ef337bcc09"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8cb9dca20dab4d5fb7deb10a1a851fee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)okenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "375df9c63e8a436e86b3c28e05101102",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)lve/main/config.json: 0%| | 0.00/642 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b5e34bb51f6840be8c62e3d7f8fc59ba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)olve/main/vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd6194aa62684fc4b15a34c49ce9051b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/suyeon/.conda/envs/seoul/lib/python3.8/site-packages/transformers/models/auto/modeling_auto.py:1352: FutureWarning: The class
AutoModelWithLMHead
is deprecated and will be removed in a future version. Please use AutoModelForCausalLM
for causal language models, AutoModelForMaskedLM
for masked language models and AutoModelForSeq2SeqLM
for encoder-decoder models.\n"," warnings.warn(\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7cec7b2cb12342dcb894287ad075f145",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading pytorch_model.bin: 0%| | 0.00/863M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3133475b854948a6868834fd5e8f3b42",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)neration_config.json: 0%| | 0.00/124 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from transformers import AutoModelWithLMHead, AutoModelForCausalLM, AutoTokenizer\n",
"import torch\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")\n",
"model = AutoModelWithLMHead.from_pretrained("microsoft/DialoGPT-medium")"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"cell_id": "00019-fcab14c1-f4a7-4d89-bd9f-f999aacd63e9",
"deepnote_cell_type": "code",
"id": "ra2vsRp-UMXo"
},
"outputs": [],
"source": [
""""\n",
"Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).\n",
"GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned\n",
"using a masked language modeling (MLM) loss.\n",
""""\n",
"\n",
"# Configs\n",
"logger = logging.getLogger(__name)\n",
"\n",
"MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())\n",
"MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"cell_id": "00020-566a709f-f62a-4209-91ee-773847714eb5",
"deepnote_cell_type": "code",
"id": "2OnASqJjUNJa"
},
"outputs": [],
"source": [
"# Args to allow for easy convertion of python script to notebook\n",
"class Args():\n",
" def init(self):\n",
" self.output_dir = './content/output-medium'\n",
" self.model_type = 'gpt2'\n",
" self.model_name_or_path = 'microsoft/DialoGPT-medium'\n",
" self.config_name = 'microsoft/DialoGPT-medium'\n",
" self.tokenizer_name = 'microsoft/DialoGPT-medium'\n",
" self.cache_dir = 'cached'\n",
" self.block_size = 512\n",
" self.do_train = True\n",
" self.do_eval = True\n",
" self.evaluate_during_training = False\n",
" self.per_gpu_train_batch_size = 4\n",
" self.per_gpu_eval_batch_size = 4\n",
" self.gradient_accumulation_steps = 1\n",
" self.learning_rate = 5e-5\n",
" self.weight_decay = 0.0\n",
" self.adam_epsilon = 1e-8\n",
" self.max_grad_norm = 1.0\n",
" self.num_train_epochs = 4\n",
" self.max_steps = -1\n",
" self.warmup_steps = 0\n",
" self.logging_steps = 1000\n",
" self.save_steps = 3500\n",
" self.save_total_limit = None\n",
" self.eval_all_checkpoints = False\n",
" self.no_cuda = False\n",
" self.overwrite_output_dir = True\n",
" self.overwrite_cache = True\n",
" self.should_continue = False\n",
" self.seed = 42\n",
" self.local_rank = -1\n",
" self.fp16 = False\n",
" self.fp16_opt_level = 'O1'\n",
"\n",
"args = Args()"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00021-72a2d478-6578-4d8b-a0bd-4310a765d649",
"deepnote_cell_type": "markdown",
"id": "9Q1dTFXxW9NE"
},
"source": [
"## Train and Evaluate"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"cell_id": "00022-4c5df9ab-1f7a-4d61-b577-763f2c8e284f",
"deepnote_cell_type": "code",
"id": "PaarIDZrW81h"
},
"outputs": [],
"source": [
"def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:\n",
" """ Train the model """\n",
" if args.local_rank in [-1, 0]:\n",
" tb_writer = SummaryWriter()\n",
"\n",
" args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)\n",
"\n",
" def collate(examples: List[torch.Tensor]):\n",
" if tokenizer._pad_token is None:\n",
" return pad_sequence(examples, batch_first=True)\n",
" return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)\n",
"\n",
" train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)\n",
" train_dataloader = DataLoader(\n",
" train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate, drop_last = True\n",
" )\n",
"\n",
" if args.max_steps > 0:\n",
" t_total = args.max_steps\n",
" args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1\n",
" else:\n",
" t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs\n",
"\n",
" model = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training\n",
" model.resize_token_embeddings(len(tokenizer))\n",
" # add_special_tokens(model, tokenizer)\n",
"\n",
"\n",
" # Prepare optimizer and schedule (linear warmup and decay)\n",
" no_decay = ["bias", "LayerNorm.weight"]\n",
" optimizer_grouped_parameters = [\n",
" {\n",
" "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],\n",
" "weight_decay": args.weight_decay,\n",
" },\n",
" {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},\n",
" ]\n",
" optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)\n",
" scheduler = get_linear_schedule_with_warmup(\n",
" optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total\n",
" )\n",
"\n",
" # Check if saved optimizer or scheduler states exist\n",
" if (\n",
" args.model_name_or_path\n",
" and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))\n",
" and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))\n",
" ):\n",
" # Load in optimizer and scheduler states\n",
" optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))\n",
" scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))\n",
"\n",
" if args.fp16:\n",
" try:\n",
" from apex import amp\n",
" except ImportError:\n",
" raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")\n",
" model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)\n",
"\n",
" # multi-gpu training (should be after apex fp16 initialization)\n",
" if args.n_gpu > 1:\n",
" model = torch.nn.DataParallel(model)\n",
"\n",
" # Distributed training (should be after apex fp16 initialization)\n",
" if args.local_rank != -1:\n",
" model = torch.nn.parallel.DistributedDataParallel(\n",
" model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True\n",
" )\n",
"\n",
" # Train!\n",
" logger.info("* Running training *")\n",
" logger.info(" Num examples = %d", len(train_dataset))\n",
" logger.info(" Num Epochs = %d", args.num_train_epochs)\n",
" logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)\n",
" logger.info(\n",
" " Total train batch size (w. parallel, distributed & accumulation) = %d",\n",
" args.train_batch_size\n",
" * args.gradient_accumulation_steps\n",
" * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),\n",
" )\n",
" logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)\n",
" logger.info(" Total optimization steps = %d", t_total)\n",
"\n",
" global_step = 0\n",
" epochs_trained = 0\n",
" steps_trained_in_current_epoch = 0\n",
" # Check if continuing training from a checkpoint\n",
" if args.model_name_or_path and os.path.exists(args.model_name_or_path):\n",
" try:\n",
" # set global_step to gobal_step of last saved checkpoint from model path\n",
" checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]\n",
" global_step = int(checkpoint_suffix)\n",
" epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)\n",
" steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)\n",
"\n",
" logger.info(" Continuing training from checkpoint, will skip to saved global_step")\n",
" logger.info(" Continuing training from epoch %d", epochs_trained)\n",
" logger.info(" Continuing training from global step %d", global_step)\n",
" logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)\n",
" except ValueError:\n",
" logger.info(" Starting fine-tuning.")\n",
"\n",
" tr_loss, logging_loss = 0.0, 0.0\n",
"\n",
" model.zero_grad()\n",
" train_iterator = trange(\n",
" epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]\n",
" )\n",
" set_seed(args) # Added here for reproducibility\n",
" for _ in train_iterator:\n",
" epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])\n",
" for step, batch in enumerate(epoch_iterator):\n",
"\n",
" # Skip past any already trained steps if resuming training\n",
" if steps_trained_in_current_epoch > 0:\n",
" steps_trained_in_current_epoch -= 1\n",
" continue\n",
"\n",
" inputs, labels = (batch, batch)\n",
" if inputs.shape[1] > 1024: continue\n",
" inputs = inputs.to(args.device)\n",
" labels = labels.to(args.device)\n",
" model.train()\n",
" outputs = model(inputs, labels=labels)\n",
" loss = outputs[0] # model outputs are always tuple in transformers (see doc)\n",
"\n",
" if args.n_gpu > 1:\n",
" loss = loss.mean() # mean() to average on multi-gpu parallel training\n",
" if args.gradient_accumulation_steps > 1:\n",
" loss = loss / args.gradient_accumulation_steps\n",
"\n",
" if args.fp16:\n",
" with amp.scale_loss(loss, optimizer) as scaled_loss:\n",
" scaled_loss.backward()\n",
" else:\n",
" loss.backward()\n",
"\n",
" tr_loss += loss.item()\n",
" if (step + 1) % args.gradient_accumulation_steps == 0:\n",
" if args.fp16:\n",
" torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)\n",
" else:\n",
" torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)\n",
" optimizer.step()\n",
" scheduler.step() # Update learning rate schedule\n",
" model.zero_grad()\n",
" global_step += 1\n",
"\n",
" if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:\n",
" # Log metrics\n",
" if (\n",
" args.local_rank == -1 and args.evaluate_during_training\n",
" ): # Only evaluate when single GPU otherwise metrics may not average well\n",
" results = evaluate(args, model, tokenizer)\n",
" for key, value in results.items():\n",
" tb_writer.add_scalar("eval_{}".format(key), value, global_step)\n",
" tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)\n",
" tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)\n",
" logging_loss = tr_loss\n",
"\n",
" if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:\n",
" checkpoint_prefix = "checkpoint"\n",
" # Save model checkpoint\n",
" output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))\n",
" os.makedirs(output_dir, exist_ok=True)\n",
" model_to_save = (\n",
" model.module if hasattr(model, "module") else model\n",
" ) # Take care of distributed/parallel training\n",
" model_to_save.save_pretrained(output_dir)\n",
" tokenizer.save_pretrained(output_dir)\n",
"\n",
" torch.save(args, os.path.join(output_dir, "training_args.bin"))\n",
" logger.info("Saving model checkpoint to %s", output_dir)\n",
"\n",
" rotate_checkpoints(args, checkpoint_prefix)\n",
"\n",
" torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))\n",
" torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))\n",
" logger.info("Saving optimizer and scheduler states to %s", output_dir)\n",
"\n",
" if args.max_steps > 0 and global_step > args.max_steps:\n",
" epoch_iterator.close()\n",
" break\n",
" if args.max_steps > 0 and global_step > args.max_steps:\n",
" train_iterator.close()\n",
" break\n",
"\n",
" if args.local_rank in [-1, 0]:\n",
" tb_writer.close()\n",
"\n",
" return global_step, tr_loss / global_step\n",
"\n",
"# Evaluation of some model\n",
"\n",
"def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, df_trn, df_val, prefix="") -> Dict:\n",
" # Loop to handle MNLI double evaluation (matched, mis-matched)\n",
" eval_output_dir = args.output_dir\n",
"\n",
" eval_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=True)\n",
" os.makedirs(eval_output_dir, exist_ok=True)\n",
" args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)\n",
" # Note that DistributedSampler samples randomly\n",
"\n",
" def collate(examples: List[torch.Tensor]):\n",
" if tokenizer._pad_token is None:\n",
" return pad_sequence(examples, batch_first=True)\n",
" return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)\n",
"\n",
" eval_sampler = SequentialSampler(eval_dataset)\n",
" eval_dataloader = DataLoader(\n",
" eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate, drop_last = True\n",
" )\n",
"\n",
" # multi-gpu evaluate\n",
" if args.n_gpu > 1:\n",
" model = torch.nn.DataParallel(model)\n",
"\n",
" # Eval!\n",
" logger.info("* Running evaluation {} *".format(prefix))\n",
" logger.info(" Num examples = %d", len(eval_dataset))\n",
" logger.info(" Batch size = %d", args.eval_batch_size)\n",
" eval_loss = 0.0\n",
" nb_eval_steps = 0\n",
" model.eval()\n",
"\n",
" for batch in tqdm(eval_dataloader, desc="Evaluating"):\n",
" inputs, labels = (batch, batch)\n",
" inputs = inputs.to(args.device)\n",
" labels = labels.to(args.device)\n",
"\n",
" with torch.no_grad():\n",
" outputs = model(inputs, labels=labels)\n",
" lm_loss = outputs[0]\n",
" eval_loss += lm_loss.mean().item()\n",
" nb_eval_steps += 1\n",
"\n",
" eval_loss = eval_loss / nb_eval_steps\n",
" perplexity = torch.exp(torch.tensor(eval_loss))\n",
"\n",
" result = {"perplexity": perplexity}\n",
"\n",
" output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")\n",
" with open(output_eval_file, "w") as writer:\n",
" logger.info("* Eval results {} *".format(prefix))\n",
" for key in sorted(result.keys()):\n",
" logger.info(" %s = %s", key, str(result[key]))\n",
" writer.write("%s = %s\n" % (key, str(result[key])))\n",
"\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"cell_id": "00023-cfba104d-22eb-4328-8b57-239ed42d1360",
"deepnote_cell_type": "code",
"id": "SCnGAJWbXD9C"
},
"outputs": [],
"source": [
"# Main runner\n",
"\n",
"def main(df_trn, df_val):\n",
" args = Args()\n",
" \n",
" if args.should_continue:\n",
" sorted_checkpoints = _sorted_checkpoints(args)\n",
" if len(sorted_checkpoints) == 0:\n",
" raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")\n",
" else:\n",
" args.model_name_or_path = sorted_checkpoints[-1]\n",
"\n",
" if (\n",
" os.path.exists(args.output_dir)\n",
" and os.listdir(args.output_dir)\n",
" and args.do_train\n",
" and not args.overwrite_output_dir\n",
" and not args.should_continue\n",
" ):\n",
" raise ValueError(\n",
" "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(\n",
" args.output_dir\n",
" )\n",
" )\n",
"\n",
" # Setup CUDA, GPU & distributed \n",
" # os.environ["CUDA_VISIBLE_DEVICES"] = "0" # GPU\n",
" device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n",
" args.n_gpu = torch.cuda.device_count()\n",
" args.device = device\n",
"\n",
" # Setup logging\n",
" logging.basicConfig(\n",
" format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",\n",
" datefmt="%m/%d/%Y %H:%M:%S",\n",
" level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,\n",
" )\n",
" logger.warning(\n",
" "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",\n",
" args.local_rank,\n",
" device,\n",
" args.n_gpu,\n",
" bool(args.local_rank != -1),\n",
" args.fp16,\n",
" )\n",
"\n",
" # Set seed\n",
" set_seed(args)\n",
"\n",
" config = AutoConfig.from_pretrained(args.config_name, cache_dir=args.cache_dir)\n",
" tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)\n",
" model = AutoModelWithLMHead.from_pretrained(\n",
" args.model_name_or_path,\n",
" from_tf=False,\n",
" config=config,\n",
" cache_dir=args.cache_dir,\n",
" )\n",
" model.to(args.device)\n",
" \n",
" logger.info("Training/evaluation parameters %s", args)\n",
"\n",
" # Training\n",
" if args.do_train:\n",
" train_dataset = load_and_cache_examples(args, tokenizer, df_trn, df_val, evaluate=False)\n",
"\n",
" global_step, tr_loss = train(args, train_dataset, model, tokenizer)\n",
" logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)\n",
"\n",
" # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()\n",
" if args.do_train:\n",
" # Create output directory if needed\n",
" os.makedirs(args.output_dir, exist_ok=True)\n",
"\n",
" logger.info("Saving model checkpoint to %s", args.output_dir)\n",
" # Save a trained model, configuration and tokenizer using
save_pretrained()
.\n"," # They can then be reloaded using
from_pretrained()
\n"," model_to_save = (\n",
" model.module if hasattr(model, "module") else model\n",
" ) # Take care of distributed/parallel training\n",
" model_to_save.save_pretrained(args.output_dir)\n",
" tokenizer.save_pretrained(args.output_dir)\n",
"\n",
" # Good practice: save your training arguments together with the trained model\n",
" torch.save(args, os.path.join(args.output_dir, "training_args.bin"))\n",
"\n",
" # Load a trained model and vocabulary that you have fine-tuned\n",
" model = AutoModelWithLMHead.from_pretrained(args.output_dir)\n",
" tokenizer = AutoTokenizer.from_pretrained(args.output_dir)\n",
" model.to(args.device)\n",
"\n",
" # Evaluation\n",
" results = {}\n",
" if args.do_eval and args.local_rank in [-1, 0]:\n",
" checkpoints = [args.output_dir]\n",
" if args.eval_all_checkpoints:\n",
" checkpoints = list(\n",
" os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))\n",
" )\n",
" logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging\n",
" logger.info("Evaluate the following checkpoints: %s", checkpoints)\n",
" for checkpoint in checkpoints:\n",
" global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""\n",
" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""\n",
"\n",
" model = AutoModelWithLMHead.from_pretrained(checkpoint)\n",
" model.to(args.device)\n",
" result = evaluate(args, model, tokenizer, df_trn, df_val, prefix=prefix)\n",
" result = dict((k + "{}".format(global_step), v) for k, v in result.items())\n",
" results.update(result)\n",
"\n",
" return results"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00024-93a983e5-e32a-474e-8b40-a2a26cd4d168",
"deepnote_cell_type": "markdown",
"id": "7NWvkdR-XHeB"
},
"source": [
"## Run the Main Function"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"cell_id": "00025-280c69e2-0adf-408f-bba7-9075e92fd669",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 637,
"referenced_widgets": [
"11f3190ad9cf410b9e68c77ff6cc0c76",
"f09c411feead44d5af661d6270f133bb",
"a349191e4ca14f88a7db5bef51ea61f3",
"467ba81e771b4861ab4f4efba9cefd89",
"ee6dc99ba7b242ca91ba9f7149255a93",
"9d87baf8169345d09dfe71e42cdd2015",
"e35bc30a886a40e297517e8552c9bd1e",
"4b415fa2e23c48c7abab097c0bbe2522",
"7229a14493674a3a94777fc2ca0e7cba",
"5b053231e2104fc3b3d5b2fb96f65671",
"5a2a3dbef64641a3836d5e36b2438e8c",
"0372eea2e66b430fa8da3d77e3855239",
"ff46db7abaff45b69a147c25c9843a38",
"5c8720db398d408c848b9848ec8ba031",
"1d00fb80d3f54004bd065f4c76ad68ab",
"da47dd1aaba14814b0d4af8c35ce1802",
"2931ea3e7310481ca6b6426d493add39",
"436eb5ba7b14477a9a58691676a19500",
"a680510bd7324bb68ca0d8c835899156",
"6aad094430a74bbda987e90dbcc9ea67",
"29c384b4b9b3418d9327cd18f7ab5769",
"d12d9e2d474e4da7969363738113acda",
"1452a5fe945241bf89ab1b0f76db1984",
"8050d6b7ed0c460a8b3c73d1bdd4da6e",
"f0bae27a3ead4e9fa8882afba86cb7fc",
"d8cc0f2c64c848038961ba8489d24a5d",
"5e88a2ed84db4a8990b93e50d9ed99da",
"086af4566a1e407f8349f94690a55feb",
"2a1eb381c73f4a5db15c6f9ee20e3fbc",
"2f218d661cee4deb9ce723dca24b2516",
"615058db3ada4904ab9f91e310c4ef05",
"2fb3e677a3bd4243a9afa02e03a0abd7",
"a0da0a17f54d4d94a47e55af9c457838",
"f2f3d8177fa444aba2d631816cee993e",
"9a5d248a631844db8675aa3ac9229d70",
"780a1099f2384d9e8eed0f489c64f77c",
"e78a63c9601541e28d08e92fbce92b40",
"8df044ced3554bb485ff0b65670167c1",
"25d797b5a7154220b32ca82d2e3c8f54",
"a9d240d2c9d645909686f5cbe291140b",
"563fee9512d4493fb0b91dd752740637",
"78f57fd057194d4abf56a0d5503cc650",
"28651f843d5e4a9d877778a85ca53461",
"bf2b3f49b9114dc783449beaaa11cf29",
"76458c250b854d2a8179267546bbcd87",
"6469c13c284c4613af47f7d15013b36a",
"c4811e8207844a018aca8a514a6ac73d",
"86d1a11a7826446aa833f791bf95efc8",
"9f6b860c2c9b449395e57c9201b3a9d0",
"c8a083f1bb494fcbb015b42e5e9f95ec",
"287a58e0b3614d40ac325e4c6c733364",
"f19e22f3971c4d8db24ba74f05973a71",
"2c844cfc647340108675be0a9f183f19",
"c6448112d0854a82a664eebb777ca3ac",
"76caca3ff923490187f0037ff346b7c1",
"ba35907dd4274c90a17d0ea5241696f9",
"5c0a013a9bfd49378e40a7e5ad0b2b88",
"7d09fe7cb36b4d06ae9884978e7fb7e6",
"e8772e19edee411db885db63295f67e0",
"b2a222fb8b074c37a88196150c160358",
"932742e77f664ac8951f8ab0726a2ed3",
"5a7abe7e18f543e99633d0fc8703dece",
"8d4ef09569b84851b30b1e21e2fb38b7",
"13ee4230d0ec4e998b7ddc1639752e36",
"24bf97f633b544a8b8cf6856d57e52ea",
"7b997afdd8ab4a96a346b760d79bd86c"
]
},
"deepnote_cell_type": "code",
"id": "e61zo2JtXGNX",
"outputId": "07f1e741-9c0e-4662-806e-96ddb75e7ed6"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"05/11/2023 16:44:27 - WARNING - main - Process rank: -1, device: cuda, n_gpu: 4, distributed training: False, 16-bits training: False\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2d200b9e5d14bf18a7591a66958c13c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)lve/main/config.json: 0%| | 0.00/642 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0f1b4dfc29b34622bb5fc6aa29eba9f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)okenizer_config.json: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2ad8a37732524090b55e7b964ff5d458",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)olve/main/vocab.json: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "49b41778ce374604b17db03bee7274ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)olve/main/merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8bb6b93cee50428498b3e0bf5bd5a2f6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading pytorch_model.bin: 0%| | 0.00/863M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c7e8710b6b8441e1ae69ecc0de8bb04c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading (…)neration_config.json: 0%| | 0.00/124 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"05/11/2023 16:48:36 - INFO - main - Training/evaluation parameters <main.Args object at 0x7efb15dc9130>\n",
"05/11/2023 16:48:36 - INFO - main - Creating features from dataset file at cached\n",
"05/11/2023 16:48:36 - INFO - main - Saving features into cached file cached/gpt2_cached_lm_512\n",
"/home/suyeon/.conda/envs/seoul/lib/python3.8/site-packages/transformers/optimization.py:407: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set
no_deprecation_warning=True
to disable this warning\n"," warnings.warn(\n",
"05/11/2023 16:48:36 - INFO - main - * Running training *\n",
"05/11/2023 16:48:36 - INFO - main - Num examples = 194\n",
"05/11/2023 16:48:36 - INFO - main - Num Epochs = 4\n",
"05/11/2023 16:48:36 - INFO - main - Instantaneous batch size per GPU = 4\n",
"05/11/2023 16:48:36 - INFO - main - Total train batch size (w. parallel, distributed & accumulation) = 16\n",
"05/11/2023 16:48:36 - INFO - main - Gradient Accumulation steps = 1\n",
"05/11/2023 16:48:36 - INFO - main - Total optimization steps = 48\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "56932399f1464f4898cc6a7c04b16796",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Epoch: 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f18275c3ecc24d26843c731bef9718ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Iteration: 0%| | 0/12 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/suyeon/.conda/envs/seoul/lib/python3.8/site-packages/torch/nn/parallel/functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n",
" warnings.warn('Was asked to gather along dimension 0, but all '\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "01f4acfbe87644e288478de3ca6b340b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Iteration: 0%| | 0/12 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c810d2de999040218f1ca776998967c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Iteration: 0%| | 0/12 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bdd780dc6a114ed4980b2a4a75dd845f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Iteration: 0%| | 0/12 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"05/11/2023 16:49:40 - INFO - main - global_step = 48, average loss = 2.4101458912094436\n",
"05/11/2023 16:49:40 - INFO - main - Saving model checkpoint to ./content/output-medium\n",
"05/11/2023 16:49:45 - INFO - main - Evaluate the following checkpoints: ['./content/output-medium']\n",
"05/11/2023 16:49:47 - INFO - main - Creating features from dataset file at cached\n",
"05/11/2023 16:49:47 - INFO - main - Saving features into cached file cached/gpt2_cached_lm_512\n",
"05/11/2023 16:49:47 - INFO - main - * Running evaluation *\n",
"05/11/2023 16:49:47 - INFO - main - Num examples = 22\n",
"05/11/2023 16:49:47 - INFO - main - Batch size = 16\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cda88713a60a436db4ae1abc68b09079",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"05/11/2023 16:49:48 - INFO - main - * Eval results *\n",
"05/11/2023 16:49:48 - INFO - main - perplexity = tensor(7.8732)\n"
]
},
{
"data": {
"text/plain": [
"{'perplexity': tensor(7.8732)}"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"main(trn_df, val_df)"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00026-8b7d6f57-8a8b-4edc-b612-2e6bace87775",
"deepnote_cell_type": "markdown",
"id": "YRpQ_n2zXQj-"
},
"source": [
"## Load the Trained Model"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"cell_id": "00027-e90f86fc-a5b4-41c5-a30b-70d09c519eac",
"colab": {
"base_uri": "https://localhost:8080/"
},
"deepnote_cell_type": "code",
"id": "HGw3qgfaXQHX",
"outputId": "8629c457-b8d7-40d3-9c28-6d23a31bde2a"
},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')\n",
"model = AutoModelWithLMHead.from_pretrained('./content/output-medium')"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"cell_id": "00028-10e2eee2-c908-4363-a238-114ef84bd1ac",
"colab": {
"base_uri": "https://localhost:8080/"
},
"deepnote_cell_type": "code",
"id": "lAWsiAvNXbxd",
"outputId": "fa4083fe-189b-456c-b64b-e981f3908763"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set
padding_side='left'
when initializing the tokenizer.\n"]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
">> User: I'd like a general check-up.\n",
"Bot: I am currently at work so I will give you a checkup at lunch.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set
padding_side='left'
when initializing the tokenizer.\n"]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
">> User: I have severe head pain.\n",
"Bot: Take a rest after the checkup. If you feel better, take a rest.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set
padding_side='left'
when initializing the tokenizer.\n"]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
">> User: it keeps me awake at night. it's a dull, heavy pain.\n",
"Bot: Are you taking a rest?\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set
padding_side='left'
when initializing the tokenizer.\n"]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
">> User: Yes\n",
"Bot: Take it as soon as you feel itchy.\n"
]
}
],
"source": [
"# Let's chat for 4 lines\n",
"for step in range(4):\n",
" Q = input(">> User:")\n",
" # encode the new user input, add the eos_token and return a tensor in Pytorch\n",
" new_user_input_ids = tokenizer.encode(Q + tokenizer.eos_token, return_tensors='pt')\n",
" # print(new_user_input_ids)\n",
"\n",
" # append the new user input tokens to the chat history\n",
" bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids\n",
"\n",
" # generated a response while limiting the total chat history to 1000 tokens, \n",
" chat_history_ids = model.generate(\n",
" bot_input_ids, max_length=200,\n",
" pad_token_id=tokenizer.eos_token_id, \n",
" no_repeat_ngram_size=3, \n",
" do_sample=True, \n",
" top_k=100, \n",
" top_p=0.7,\n",
" temperature=0.8\n",
" )\n",
" \n",
" # pretty print last ouput tokens from bot\n",
" print(f">> User: {Q}")\n",
" print("Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00029-374b7bb4-c23b-47eb-8a1d-8dcedc2ce922",
"deepnote_cell_type": "markdown",
"id": "ANSQlQezXqwn"
},
"source": [
"## Push Model to Hugging Face"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cell_id": "00030-77ba7cd8-d44c-4428-99db-096858e0a2ed",
"colab": {
"base_uri": "https://localhost:8080/"
},
"deepnote_cell_type": "code",
"id": "VgnHRgHKXwDd",
"outputId": "b15594ac-7aca-4136-8110-b9ab4da83bb5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading package lists... Done\n",
"Building dependency tree \n",
"Reading state information... Done\n",
"git-lfs is already the newest version (2.3.4-1).\n",
"The following package was automatically installed and is no longer required:\n",
" libnvidia-common-460\n",
"Use 'sudo apt autoremove' to remove it.\n",
"0 upgraded, 0 newly installed, 0 to remove and 40 not upgraded.\n"
]
}
],
"source": [
"!sudo apt-get install git-lfs"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"cell_id": "00031-26784c7e-5e24-49f5-9ee4-44a34f5feaec",
"deepnote_cell_type": "code",
"id": "uhqMtvfmXei8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using
tokenizers
before the fork if possible\n","\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
"To disable this warning, you can either:\n",
"\t- Avoid using
tokenizers
before the fork if possible\n","\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
]
}
],
"source": [
"!git config --global user.email "sy92160776@gmail.com"\n",
"# Tip: using the same email as your huggingface.co account will link your commits to your profile\n",
"!git config --global user.name "kangsuyeon01""
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"cell_id": "00032-f231ee5a-2498-4b7b-be97-395c83dd768f",
"deepnote_cell_type": "code",
"id": "tfUsrKR7YLT1"
},
"outputs": [],
"source": [
"MY_MODEL_NAME = 'DialoGPT-medium-HospitalBot'\n",
"with open('/home/suyeon/APIKEY/HuggingFace_API.txt', 'rt') as f:\n",
" HUGGINGFACE_API_KEY = f.read().strip()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"cell_id": "00033-c04acb90-874a-45bc-a722-b3af26bdaf79",
"deepnote_cell_type": "code",
"id": "_65nsiLcYNXI"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "83c657e56bb04fe7a5ecfcc1e1249ce0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upload 1 LFS files: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48912912ee844571bc0fff5cbbe5e212",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"pytorch_model.bin: 0%| | 0.00/1.44G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"CommitInfo(commit_url='https://huggingface.co/sillon/DialoGPT-medium-HospitalBot/commit/3a0577a28685b5a54c2714cc97d50e303f716331', commit_message='Upload tokenizer', commit_description='', oid='3a0577a28685b5a54c2714cc97d50e303f716331', pr_url=None, pr_revision=None, pr_num=None)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.push_to_hub(MY_MODEL_NAME, use_auth_token=HUGGINGFACE_API_KEY)\n",
"tokenizer.push_to_hub(MY_MODEL_NAME, use_auth_token=HUGGINGFACE_API_KEY)"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_id": "00034-577d32f5-0b28-4ae4-9712-8c8dfd369e61",
"deepnote_cell_type": "markdown",
"id": "D_XfXTCrZKmO"
},
"source": [
"## All Done!"
]
},
{
"cell_type": "markdown",
"metadata": {
"created_in_deepnote_cell": true,
"deepnote_cell_type": "markdown",
"tags": []
},
"source": [
"<a style='text-decoration:none;line-height:16px;display:flex;color:#5B5B62;padding:10px;justify-content:end;' href='https://deepnote.com?utm_source=created-in-deepnote-cell&projectId=40d91331-6c83-44f4-b569-6fa68d59a8f8' target="_blank">\n",
" \n",
"Created in Deepnote"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Copy of model_train_upload_workflow.ipynb",
"provenance": []
},
"deepnote": {},
"deepnote_execution_queue": [],
"deepnote_notebook_id": "7e98f606-a46e-4036-880e-b85c68e463a1",
"kernelspec": {
"display_name": "Python 3.8.5 ('seoul')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"vscode": {
"interpreter": {
"hash": "66d0a405ae27e8958fb0b5f48aeb85cb7e87d44ab565835d4670697206b4f1fe"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0176fea419f643108556169b3e254593": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0372eea2e66b430fa8da3d77e3855239": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_5c8720db398d408c848b9848ec8ba031",
"IPY_MODEL_1d00fb80d3f54004bd065f4c76ad68ab",
"IPY_MODEL_da47dd1aaba14814b0d4af8c35ce1802"
],
"layout": "IPY_MODEL_ff46db7abaff45b69a147c25c9843a38"
}
},
"03c261a2820e4202872da868e2581463": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"086af4566a1e407f8349f94690a55feb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"10e451d78cea4b9c903f3acde2135bb4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e39c2b28e72f45168c98a18843d40e45",
"placeholder": "",
"style": "IPY_MODEL_61edcfb6213e476db6515cb2dc0d443c",
"value": " 26.0/26.0 [00:00<00:00, 645B/s]"
}
},
"11f3190ad9cf410b9e68c77ff6cc0c76": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_a349191e4ca14f88a7db5bef51ea61f3",
"IPY_MODEL_467ba81e771b4861ab4f4efba9cefd89",
"IPY_MODEL_ee6dc99ba7b242ca91ba9f7149255a93"
],
"layout": "IPY_MODEL_f09c411feead44d5af661d6270f133bb"
}
},
"13ee4230d0ec4e998b7ddc1639752e36": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1452a5fe945241bf89ab1b0f76db1984": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f0bae27a3ead4e9fa8882afba86cb7fc",
"IPY_MODEL_d8cc0f2c64c848038961ba8489d24a5d",
"IPY_MODEL_5e88a2ed84db4a8990b93e50d9ed99da"
],
"layout": "IPY_MODEL_8050d6b7ed0c460a8b3c73d1bdd4da6e"
}
},
"14ec5c3b716a45719fc2432847ebd5e1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"189fa4cd2ebe446a8aa317d1176698af": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"19b3bf43ce624ffe91e93b081c17e230": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_98f053def4eb49c388c1b9ec5522fcb9",
"IPY_MODEL_1b1afa82c7ec434ea055b535b7633a20",
"IPY_MODEL_a8f8422f84e44af790f3df6f3a2b2fa0"
],
"layout": "IPY_MODEL_50645fb8d66248c9bd0fefa7dfedb63a"
}
},
"1b1afa82c7ec434ea055b535b7633a20": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_819e563dc615432dbae79291535531b2",
"max": 641,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4663b6836243405b8484d3b8cb4c142d",
"value": 641
}
},
"1d00fb80d3f54004bd065f4c76ad68ab": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_6aad094430a74bbda987e90dbcc9ea67",
"max": 93,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_a680510bd7324bb68ca0d8c835899156",
"value": 93
}
},
"24bf97f633b544a8b8cf6856d57e52ea": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"25d797b5a7154220b32ca82d2e3c8f54": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"28651f843d5e4a9d877778a85ca53461": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"287a58e0b3614d40ac325e4c6c733364": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2931ea3e7310481ca6b6426d493add39": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"29c384b4b9b3418d9327cd18f7ab5769": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"2a1eb381c73f4a5db15c6f9ee20e3fbc": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2c844cfc647340108675be0a9f183f19": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2d938445fa094302996261c3a0f4b449": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2f218d661cee4deb9ce723dca24b2516": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"2fb3e677a3bd4243a9afa02e03a0abd7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"36a3a76061e247ba83910633730b3d79": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3c57ab09a2d243c49113d5440924cbf8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d661f6a49f9143cab40226922aaecbd5",
"placeholder": "",
"style": "IPY_MODEL_b4aa1dc7e7a54199a26917cfa1b80a0d",
"value": "Downloading: 100%"
}
},
"3e76e49012cd49728326a577475f2613": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"42792f7537d44a8cb05e2f831115c38e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c9853de7562643268ca86d000deb8a57",
"placeholder": "",
"style": "IPY_MODEL_189fa4cd2ebe446a8aa317d1176698af",
"value": "Downloading: 100%"
}
},
"436eb5ba7b14477a9a58691676a19500": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4663b6836243405b8484d3b8cb4c142d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"467ba81e771b4861ab4f4efba9cefd89": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7229a14493674a3a94777fc2ca0e7cba",
"max": 4,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4b415fa2e23c48c7abab097c0bbe2522",
"value": 4
}
},
"4687279b5213426fa4816a1aef931965": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4a5b0d20fa5841639e0efb6fac78f9b5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"4b415fa2e23c48c7abab097c0bbe2522": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"50645fb8d66248c9bd0fefa7dfedb63a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"563fee9512d4493fb0b91dd752740637": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"5a2a3dbef64641a3836d5e36b2438e8c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5a7abe7e18f543e99633d0fc8703dece": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5b053231e2104fc3b3d5b2fb96f65671": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5c0a013a9bfd49378e40a7e5ad0b2b88": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5c378b98a59a42f6ba0241b490999214": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4687279b5213426fa4816a1aef931965",
"placeholder": "",
"style": "IPY_MODEL_7438ec47869545d09fa29410a29a8056",
"value": "Downloading: 100%"
}
},
"5c8720db398d408c848b9848ec8ba031": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_436eb5ba7b14477a9a58691676a19500",
"placeholder": "",
"style": "IPY_MODEL_2931ea3e7310481ca6b6426d493add39",
"value": "Iteration: 100%"
}
},
"5e624b2d080f45ce896057fb6f32da50": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5e88a2ed84db4a8990b93e50d9ed99da": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a0da0a17f54d4d94a47e55af9c457838",
"placeholder": "",
"style": "IPY_MODEL_2fb3e677a3bd4243a9afa02e03a0abd7",
"value": " 93/93 [00:58<00:00, 1.74it/s]"
}
},
"615058db3ada4904ab9f91e310c4ef05": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"61edcfb6213e476db6515cb2dc0d443c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"632bf981f33b4afc806c32376f5f8890": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6469c13c284c4613af47f7d15013b36a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"696af76a97b84aaab5c7ab4db43d1e5a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6aad094430a74bbda987e90dbcc9ea67": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7229a14493674a3a94777fc2ca0e7cba": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7438ec47869545d09fa29410a29a8056": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"76458c250b854d2a8179267546bbcd87": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_c4811e8207844a018aca8a514a6ac73d",
"IPY_MODEL_86d1a11a7826446aa833f791bf95efc8",
"IPY_MODEL_9f6b860c2c9b449395e57c9201b3a9d0"
],
"layout": "IPY_MODEL_6469c13c284c4613af47f7d15013b36a"
}
},
"76caca3ff923490187f0037ff346b7c1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"780a1099f2384d9e8eed0f489c64f77c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a9d240d2c9d645909686f5cbe291140b",
"placeholder": "",
"style": "IPY_MODEL_25d797b5a7154220b32ca82d2e3c8f54",
"value": "Iteration: 100%"
}
},
"78f57fd057194d4abf56a0d5503cc650": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7b997afdd8ab4a96a346b760d79bd86c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7d09fe7cb36b4d06ae9884978e7fb7e6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5a7abe7e18f543e99633d0fc8703dece",
"placeholder": "",
"style": "IPY_MODEL_932742e77f664ac8951f8ab0726a2ed3",
"value": "Evaluating: 100%"
}
},
"8050d6b7ed0c460a8b3c73d1bdd4da6e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8134df3bab414d2f9820492ba5b1855d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_696af76a97b84aaab5c7ab4db43d1e5a",
"max": 351265583,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_952840fc90b04abbb473f28a096eb52e",
"value": 351265583
}
},
"819e563dc615432dbae79291535531b2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"82beeb5a7cd94155a169da2d5ee3bae4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"86d1a11a7826446aa833f791bf95efc8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2c844cfc647340108675be0a9f183f19",
"max": 93,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f19e22f3971c4d8db24ba74f05973a71",
"value": 93
}
},
"896432acc69d4f15bf100aad978b633a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_632bf981f33b4afc806c32376f5f8890",
"placeholder": "",
"style": "IPY_MODEL_b7e3a1799b9248e0b5bd709537194fbd",
"value": "Downloading: 100%"
}
},
"8d22ee6e39174f5f8e342a156a323ce3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8d4ef09569b84851b30b1e21e2fb38b7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"8df044ced3554bb485ff0b65670167c1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_bf2b3f49b9114dc783449beaaa11cf29",
"placeholder": "",
"style": "IPY_MODEL_28651f843d5e4a9d877778a85ca53461",
"value": " 93/93 [00:59<00:00, 1.60it/s]"
}
},
"924d0b23a20f423ea28c03b63e55d5c1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_5c378b98a59a42f6ba0241b490999214",
"IPY_MODEL_c3b2f4a71f664d4ebcd237b2ccb4c72d",
"IPY_MODEL_10e451d78cea4b9c903f3acde2135bb4"
],
"layout": "IPY_MODEL_ea51c7ae24354b31ad5fa724700aed0e"
}
},
"932742e77f664ac8951f8ab0726a2ed3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"93fc31bef2cd49f3a703fc6e2f879a26": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"952840fc90b04abbb473f28a096eb52e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"97cd5eea048e4fdb8e445a65db179e98": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d7d3203f5dd845a58d9e3a109a669afb",
"max": 1042301,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_82beeb5a7cd94155a169da2d5ee3bae4",
"value": 1042301
}
},
"98f053def4eb49c388c1b9ec5522fcb9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0176fea419f643108556169b3e254593",
"placeholder": "",
"style": "IPY_MODEL_36a3a76061e247ba83910633730b3d79",
"value": "Downloading: 100%"
}
},
"9a5d248a631844db8675aa3ac9229d70": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9b24b05dfcee4e2d8795e13efd3256c9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_fd015f3534ac4c4e9dbaf6a29d699558",
"placeholder": "",
"style": "IPY_MODEL_3e76e49012cd49728326a577475f2613",
"value": " 456k/456k [00:00<00:00, 1.57MB/s]"
}
},
"9c8a3d9e8db048a5836fbf901df12a11": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9d87baf8169345d09dfe71e42cdd2015": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"9f2c915e08f24f58b33baad1a9920bd3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_896432acc69d4f15bf100aad978b633a",
"IPY_MODEL_bb7cc84d68f64576a9cc3b64422ec172",
"IPY_MODEL_9b24b05dfcee4e2d8795e13efd3256c9"
],
"layout": "IPY_MODEL_c74a065d2ffc442490cb74dc26cfe413"
}
},
"9f6b860c2c9b449395e57c9201b3a9d0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_76caca3ff923490187f0037ff346b7c1",
"placeholder": "",
"style": "IPY_MODEL_c6448112d0854a82a664eebb777ca3ac",
"value": " 93/93 [00:58<00:00, 1.47it/s]"
}
},
"a0da0a17f54d4d94a47e55af9c457838": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a349191e4ca14f88a7db5bef51ea61f3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e35bc30a886a40e297517e8552c9bd1e",
"placeholder": "",
"style": "IPY_MODEL_9d87baf8169345d09dfe71e42cdd2015",
"value": "Epoch: 100%"
}
},
"a680510bd7324bb68ca0d8c835899156": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"a8f8422f84e44af790f3df6f3a2b2fa0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_8d22ee6e39174f5f8e342a156a323ce3",
"placeholder": "",
"style": "IPY_MODEL_4a5b0d20fa5841639e0efb6fac78f9b5",
"value": " 641/641 [00:00<00:00, 12.0kB/s]"
}
},
"a9d240d2c9d645909686f5cbe291140b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b2a222fb8b074c37a88196150c160358": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7b997afdd8ab4a96a346b760d79bd86c",
"placeholder": "",
"style": "IPY_MODEL_24bf97f633b544a8b8cf6856d57e52ea",
"value": " 10/10 [00:01<00:00, 5.51it/s]"
}
},
"b4aa1dc7e7a54199a26917cfa1b80a0d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"b7e3a1799b9248e0b5bd709537194fbd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ba35907dd4274c90a17d0ea5241696f9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_7d09fe7cb36b4d06ae9884978e7fb7e6",
"IPY_MODEL_e8772e19edee411db885db63295f67e0",
"IPY_MODEL_b2a222fb8b074c37a88196150c160358"
],
"layout": "IPY_MODEL_5c0a013a9bfd49378e40a7e5ad0b2b88"
}
},
"bb7cc84d68f64576a9cc3b64422ec172": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9c8a3d9e8db048a5836fbf901df12a11",
"max": 456318,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_fd1253ab10be4056aa861f225148985e",
"value": 456318
}
},
"bf2b3f49b9114dc783449beaaa11cf29": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c2913e7dc3a74330bfcdde47486bee52": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_42792f7537d44a8cb05e2f831115c38e",
"IPY_MODEL_8134df3bab414d2f9820492ba5b1855d",
"IPY_MODEL_ff43f075183f4e93ae151bc4ca55015b"
],
"layout": "IPY_MODEL_f9cf6c10f6904550a9f7dd7cac79282b"
}
},
"c3b2f4a71f664d4ebcd237b2ccb4c72d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5e624b2d080f45ce896057fb6f32da50",
"max": 26,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f776efddb638452fa783a593d75b39c2",
"value": 26
}
},
"c42e773418c44a58a024403c78a2d9c2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c4811e8207844a018aca8a514a6ac73d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_287a58e0b3614d40ac325e4c6c733364",
"placeholder": "",
"style": "IPY_MODEL_c8a083f1bb494fcbb015b42e5e9f95ec",
"value": "Iteration: 100%"
}
},
"c6448112d0854a82a664eebb777ca3ac": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c74a065d2ffc442490cb74dc26cfe413": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c8a083f1bb494fcbb015b42e5e9f95ec": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c9853de7562643268ca86d000deb8a57": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cfd7ee6215074d319467df184a3fa1a3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2d938445fa094302996261c3a0f4b449",
"placeholder": "",
"style": "IPY_MODEL_03c261a2820e4202872da868e2581463",
"value": " 1.04M/1.04M [00:00<00:00, 1.06MB/s]"
}
},
"d12d9e2d474e4da7969363738113acda": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d661f6a49f9143cab40226922aaecbd5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d7d3203f5dd845a58d9e3a109a669afb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d8cc0f2c64c848038961ba8489d24a5d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_615058db3ada4904ab9f91e310c4ef05",
"max": 93,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_2f218d661cee4deb9ce723dca24b2516",
"value": 93
}
},
"da47dd1aaba14814b0d4af8c35ce1802": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d12d9e2d474e4da7969363738113acda",
"placeholder": "",
"style": "IPY_MODEL_29c384b4b9b3418d9327cd18f7ab5769",
"value": " 93/93 [00:58<00:00, 1.40it/s]"
}
},
"e35bc30a886a40e297517e8552c9bd1e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e39c2b28e72f45168c98a18843d40e45": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e78a63c9601541e28d08e92fbce92b40": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_78f57fd057194d4abf56a0d5503cc650",
"max": 93,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_563fee9512d4493fb0b91dd752740637",
"value": 93
}
},
"e8772e19edee411db885db63295f67e0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_13ee4230d0ec4e998b7ddc1639752e36",
"max": 10,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_8d4ef09569b84851b30b1e21e2fb38b7",
"value": 10
}
},
"ea51c7ae24354b31ad5fa724700aed0e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ee6dc99ba7b242ca91ba9f7149255a93": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5a2a3dbef64641a3836d5e36b2438e8c",
"placeholder": "",
"style": "IPY_MODEL_5b053231e2104fc3b3d5b2fb96f65671",
"value": " 4/4 [03:55<00:00, 58.77s/it]"
}
},
"f09c411feead44d5af661d6270f133bb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f0bae27a3ead4e9fa8882afba86cb7fc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2a1eb381c73f4a5db15c6f9ee20e3fbc",
"placeholder": "",
"style": "IPY_MODEL_086af4566a1e407f8349f94690a55feb",
"value": "Iteration: 100%"
}
},
"f19e22f3971c4d8db24ba74f05973a71": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"f2f3d8177fa444aba2d631816cee993e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_780a1099f2384d9e8eed0f489c64f77c",
"IPY_MODEL_e78a63c9601541e28d08e92fbce92b40",
"IPY_MODEL_8df044ced3554bb485ff0b65670167c1"
],
"layout": "IPY_MODEL_9a5d248a631844db8675aa3ac9229d70"
}
},
"f5f9c8c0e8814258a32d5cf60c49f640": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_3c57ab09a2d243c49113d5440924cbf8",
"IPY_MODEL_97cd5eea048e4fdb8e445a65db179e98",
"IPY_MODEL_cfd7ee6215074d319467df184a3fa1a3"
],
"layout": "IPY_MODEL_14ec5c3b716a45719fc2432847ebd5e1"
}
},
"f776efddb638452fa783a593d75b39c2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"f9cf6c10f6904550a9f7dd7cac79282b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fd015f3534ac4c4e9dbaf6a29d699558": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"fd1253ab10be4056aa861f225148985e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"ff43f075183f4e93ae151bc4ca55015b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c42e773418c44a58a024403c78a2d9c2",
"placeholder": "",
"style": "IPY_MODEL_93fc31bef2cd49f3a703fc6e2f879a26",
"value": " 351M/351M [00:12<00:00, 27.9MB/s]"
}
},
"ff46db7abaff45b69a147c25c9843a38": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}