[NLP Project] 성능 기록

2022. 11. 6. 01:30·Project/캡스톤디자인2
728x90
반응형

모델명: test_model.h5 

파라미터 설정

test-train split : 8:2

Optimaizer: Adam

Epoch = 3

batch_size=128

Learning_rate = 0.001

 

 

성능

loss: 0.1447 - accuracy: 0.7625

 


모델명: test_model2.h5 

파라미터 설정

test-train split : 8:2

Optimaizer: Adam

Epoch = 20

batch_size=128

Learning_rate = 0.005

성능

loss: 0.1796 - accuracy: 0.7463

 

학습로그

더보기

Epoch 1/20
2022-11-06 01:29:32.795455: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.10
2022-11-06 01:29:33.114739: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.7
563/563 [==============================] - 18s 25ms/step - loss: 0.2038 - accuracy: 0.7059 - val_loss: 0.1458 - val_accuracy: 0.7606
Epoch 2/20
563/563 [==============================] - 12s 21ms/step - loss: 0.1406 - accuracy: 0.7660 - val_loss: 0.1398 - val_accuracy: 0.7676
Epoch 3/20
563/563 [==============================] - 12s 21ms/step - loss: 0.1334 - accuracy: 0.7723 - val_loss: 0.1376 - val_accuracy: 0.7702
Epoch 4/20
563/563 [==============================] - 12s 21ms/step - loss: 0.1293 - accuracy: 0.7764 - val_loss: 0.1374 - val_accuracy: 0.7701
Epoch 5/20
563/563 [==============================] - 12s 21ms/step - loss: 0.1240 - accuracy: 0.7826 - val_loss: 0.1376 - val_accuracy: 0.7705
Epoch 6/20
563/563 [==============================] - 12s 21ms/step - loss: 0.1194 - accuracy: 0.7895 - val_loss: 0.1394 - val_accuracy: 0.7704
Epoch 7/20
563/563 [==============================] - 12s 21ms/step - loss: 0.1142 - accuracy: 0.7953 - val_loss: 0.1420 - val_accuracy: 0.7668
Epoch 8/20
563/563 [==============================] - 12s 21ms/step - loss: 0.1092 - accuracy: 0.8011 - val_loss: 0.1452 - val_accuracy: 0.7652
Epoch 9/20
563/563 [==============================] - 12s 21ms/step - loss: 0.1045 - accuracy: 0.8084 - val_loss: 0.1483 - val_accuracy: 0.7619
Epoch 10/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0998 - accuracy: 0.8154 - val_loss: 0.1523 - val_accuracy: 0.7590
Epoch 11/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0969 - accuracy: 0.8209 - val_loss: 0.1569 - val_accuracy: 0.7580
Epoch 12/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0929 - accuracy: 0.8267 - val_loss: 0.1589 - val_accuracy: 0.7563
Epoch 13/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0906 - accuracy: 0.8303 - val_loss: 0.1633 - val_accuracy: 0.7526
Epoch 14/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0882 - accuracy: 0.8347 - val_loss: 0.1649 - val_accuracy: 0.7547
Epoch 15/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0867 - accuracy: 0.8362 - val_loss: 0.1706 - val_accuracy: 0.7511
Epoch 16/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0833 - accuracy: 0.8423 - val_loss: 0.1722 - val_accuracy: 0.7490
Epoch 17/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0827 - accuracy: 0.8428 - val_loss: 0.1748 - val_accuracy: 0.7433
Epoch 18/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0811 - accuracy: 0.8456 - val_loss: 0.1768 - val_accuracy: 0.7500
Epoch 19/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0800 - accuracy: 0.8475 - val_loss: 0.1781 - val_accuracy: 0.7479
Epoch 20/20
563/563 [==============================] - 12s 21ms/step - loss: 0.0800 - accuracy: 0.8478 - val_loss: 0.1796 - val_accuracy: 0.7463
563/563 [==============================] - 4s 7ms/step - loss: 0.1796 - accuracy: 0.7463

모델명: test_model3.h5 

rmsprop 0.001

셀프어텐션 추가

Epoch 1/3
2022-11-08 13:26:29.106338: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.10
563/563 [==============================] - 186s 325ms/step - loss: 0.2460 - accuracy: 0.6769 - val_loss: 0.1975 - val_accuracy: 0.6903
Epoch 2/3
563/563 [==============================] - 181s 321ms/step - loss: 0.1895 - accuracy: 0.6960 - val_loss: 0.1757 - val_accuracy: 0.7169
Epoch 3/3
563/563 [==============================] - 181s 322ms/step - loss: 0.1705 - accuracy: 0.7228 - val_loss: 0.1621 - val_accuracy: 0.7378
563/563 [==============================] - 23s 40ms/step - loss: 0.1621 - accuracy: 0.7378
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, 70, 128)           512000    
_________________________________________________________________
bidirectional (Bidirectional (None, 70, 256)           263168    
_________________________________________________________________
seq_self_attention (SeqSelfA (None, 70, 256)           16449     
_________________________________________________________________
time_distributed (TimeDistri (None, 70, 30)            7710      
=================================================================
Total params: 799,327
Trainable params: 799,327
Non-trainable params: 0
_________________________________________________________________
단어             |실제값  |예측값
----------------------------------
무단전재&재배포         |-      |-
금즙               |-      |-
-윤신욱             |PER_B  |PER_B
-                |CVL_B  |CVL_B
uk82@mydaily.co.kr|TRM_B  |TRM_B
**********************************
/home/suyeon/anaconda3/envs/py39/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/suyeon/anaconda3/envs/py39/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/suyeon/anaconda3/envs/py39/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/suyeon/anaconda3/envs/py39/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/suyeon/anaconda3/envs/py39/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/home/suyeon/anaconda3/envs/py39/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1334: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
              precision    recall  f1-score   support

           -       0.12      0.99      0.21    145777
       cvl_b       0.37      0.04      0.07     11495
       num_b       0.48      0.29      0.36     11032
       per_b       0.36      0.18      0.24      8497
       org_b       0.50      0.27      0.35      8114
       dat_b       0.88      0.60      0.71      5172
       loc_b       0.34      0.02      0.04      4088
       trm_b       0.14      0.10      0.12      3656
       evt_b       0.37      0.21      0.27      2242
       num_i       0.46      0.01      0.01      1800
       dat_i       0.44      0.66      0.53      1628
       anm_b       0.44      0.08      0.13      1337
       evt_i       0.10      0.07      0.08      1254
       per_i       0.00      0.00      0.00      1014
       org_i       0.00      0.00      0.00       979
       afw_b       0.00      0.00      0.00       849
       cvl_i       0.00      0.00      0.00       649
       trm_i       0.00      0.00      0.00       663
       tim_b       0.70      0.31      0.43       702
       fld_b       0.00      0.00      0.00       454
       afw_i       0.00      0.00      0.00       358
       tim_i       0.00      0.00      0.00       237
       plt_b       0.00      0.00      0.00        65
       mat_b       0.00      0.00      0.00        53
       loc_i       0.00      0.00      0.00        46
       anm_i       0.00      0.00      0.00        13
       fld_i       0.00      0.00      0.00         6
       mat_i       0.00      0.00      0.00         1
       plt_i       0.00      0.00      0.00         0
         PAD       0.00      0.00      0.00   1047819

   micro avg       0.12      0.12      0.12   1260000
   macro avg       0.19      0.13      0.12   1260000
weighted avg       0.03      0.12      0.04   1260000
728x90
반응형

'Project > 캡스톤디자인2' 카테고리의 다른 글

[NLP Project] LSTM + self-attention  (0) 2022.11.08
[NLP Project] input 값을 넣어 개체명 인식하기 - 오류 해결  (0) 2022.11.07
[NLP Project] 5. 정답 예측하기  (0) 2022.11.06
[NLP Project] 4. LSTM 모델 구축  (0) 2022.11.06
[NLP Project] 2. 토큰화 하기  (0) 2022.11.05
'Project/캡스톤디자인2' 카테고리의 다른 글
  • [NLP Project] LSTM + self-attention
  • [NLP Project] input 값을 넣어 개체명 인식하기 - 오류 해결
  • [NLP Project] 5. 정답 예측하기
  • [NLP Project] 4. LSTM 모델 구축
sillon
sillon
꾸준해지려고 합니다..
    반응형
  • sillon
    sillon coding
    sillon
  • 전체
    오늘
    어제
    • menu (614)
      • notice (2)
      • python (68)
        • 자료구조 & 알고리즘 (23)
        • 라이브러리 (19)
        • 기초 (8)
        • 자동화 (14)
        • 보안 (1)
      • coding test - python (301)
        • Programmers (166)
        • 백준 (76)
        • Code Tree (22)
        • 기본기 문제 (37)
      • coding test - C++ (5)
        • Programmers (4)
        • 백준 (1)
        • 기본기문제 (0)
      • 공부정리 (5)
        • 신호처리 시스템 (0)
        • Deep learnig & Machine lear.. (41)
        • Data Science (18)
        • Computer Vision (17)
        • NLP (40)
        • Dacon (2)
        • 모두를 위한 딥러닝 (강의 정리) (4)
        • 모두의 딥러닝 (교재 정리) (9)
        • 통계 (2)
      • HCI (23)
        • Haptics (7)
        • Graphics (11)
        • Arduino (4)
      • Project (21)
        • Web Project (1)
        • App Project (1)
        • Paper Project (1)
        • 캡스톤디자인2 (17)
        • etc (1)
      • OS (10)
        • Ubuntu (9)
        • Rasberry pi (1)
      • App & Web (9)
        • Android (7)
        • javascript (2)
      • C++ (5)
        • 기초 (5)
      • Cloud & SERVER (8)
        • Git (2)
        • Docker (1)
        • DB (4)
      • Paper (7)
        • NLP Paper review (6)
      • 데이터 분석 (0)
        • GIS (0)
      • daily (2)
        • 대학원 준비 (0)
      • 영어공부 (6)
        • job interview (2)
  • 블로그 메뉴

    • 홈
    • 태그
    • 방명록
  • 링크

  • 공지사항

  • 인기 글

  • 태그

    백준
    programmers
    소수
    Python
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.3
sillon
[NLP Project] 성능 기록
상단으로

티스토리툴바